QN e

D-A262 517
hlll A \"lll |

3 . ; d A
. . i i
. ‘ I ’.'l 3
&
¥ N ;‘
D 2F bads [
~ R " '
% 5
} . 4
P
: % L’i\:’-"“; e
>R T et v e

PROCEEDINGS OF THE ELEVENTH ANNUAL
NATIONAL CONFERENCE ON Ada TECHNOLOGY

MARCH 15-18, 1993

Sponsored By:
ANCOST, INC.
Reproduced From . SRS
. With Participation By:
Best Available Copy . United States Army 93—06833

- Unitced States Na , | il
United States Air F‘;)llfce ‘WM‘NMMW}E
United States Marine Corps ~
Ada Joint Program Office
Defense Information Systems Agency

.Federal Aviation Administration
National Aeronautics & Space Administration

’@ﬁb&wl‘l STATEMEN.

Academic Host:

|

VPROCEEDINGS OF THE ELEVENTH ANNUAL
NATIONAL CONFERENCE ON
- Ada TECHNOLOGY

Sponsored By:
ANCOST, INC.

‘With Participation By:
United States Army
United States Navy
United States Air Force
United States Marine Corps
Ada Joint Program Office |
Defense Information Systems Agency
Federal Aviation Administration
National Aeronautics & Space Administration -

Academic Host: Accesion For
irgini ; ; . | NTIS CRA&I
Virginia ‘State University | M g
U..announced o {
: Justification
DTIC QUALITY INSPECTED 4 >

Williamsburg Hilton--Williamsburg, VA| Dist ibution/

Availability Codes

T _ March 15-18, 1993 Avail andjor
‘ Dist Spgcial

el |
The Papers in this volume were printed directly from unedited reproducible copies prepared by - ‘
the authors. Responsibility for contents rests upon the author, and not the symposium committee
or its members. After the symposium, all publication rights of each paper are reserved by their
authors, and requests for republication of a paper should be addressed to the appropriate author.
Abstracting is permitted, and it would be appreciated if the symposium is credited when abstracts

or papers are republished. Requests for individual copies of papers should be addressed to the
authors.

Annroved for Public Release: Distribution Unlimited

-9
4

3

ELEVENTH ANNUAL NATIONAL CONFERENCE ON Ada
TECHNOLOGY CONFERENCE COMMITTEE 1992-1993

" Executive Committee Chair:

MR. STEVE LAZEROWICH, Alsys

Treasurer:
MS. SUSAN MARKEL, TRW

Secretary:

MR. MURRAY KIRCH, Stockton State
University

Inumediate Past Chair:

MS. DEE GRAUMANN, GDE
Systems, lnc.

Coaference Chair:
MS. JUDITH M. GILES, lmermemcs
Isc.

Acsdemic Outreach:

‘MR. JAMES WALKER, Network

Solutions

Budget Committee Chair:
MR. MICHAEL SAPENTER, Telos
Federal Systerus

Policien, Procedures & By-Laws Chair:
DR RICHARD KUNTZ, Monmouth
College

. Public Relations Chair:

MS. BEVERLY SAMPSON, DISA

Paosls Chair:
MS. DEE GRAUMANN, GDE
Systemss, Inc.

Tutorial Chair:
MS. CHRISTINE BRAUN, GTE
Federal Systems

Techairal Program Chair:
MR. DANIEL BE. HOCKING, Army
Research Laboratory = -

Student Papers Chair:
DR. MARTIN BARRETT, Peas State
Uaiversity Harrisburg

‘MR. MIGUEL A. CARRIO, JR., MTM

Engineering

MS. LUWANA S. CLEVER, Florida
Institute of Technology

MR. NOEL GOYETTE, Computer
Science Corporation

MS. JUDY GRIFFIN, Software
Modernization Institute

DR. JAMES HOOPER, Marshall
Uaiversity

MR. GLEN HUGHES, Rationa!
DR. CHARLES LILLIE, SAIC

MR. EMMANUEL. OMOJOKUN,
Virginia State University

MS. LAURA VEITH, Rational

Conference Director:

MARJORIE Y. RISINGER, CMP,
Roseaberg & Risinger
ADVISCRY MEMBERS...
MR. CURRIE COLKET, US Navy
Maj. TOM CROAK, US Ak R roe

MR. JEFFREY HERMAN, US Amy
CBCOM, SED

MR. DANIEL E. HOCKING, Army
Research Laboratory

MR. HUET LANDRY, DISA Ceater
for Standards

MR. E.V. (SCKE) SALTER, DISA
DR. JOHN SOLOMONL, AJP0O

MR. CARRINGTON STEWART,
NASA

MS. CAKO! YN STRANO, FAA
Maj. DAVID THOMPSON, USMC

MS. KAY TREZZA, US Amy
CECOM, SED

Tenth Annual National Ada Confefenée Committee

oy g

=
o
Z.
E
o
E
-
et
o
<
>
o)
ot

ITY,

~

CRYSTAL C

VIRGINIA

rence
ights

Ada Confe
| ighl

1992 Ada Conference

P e
— \.,

= L
<) ooy
o S
= S
O SRR
C M ,V,.
o B
M :
2 o ‘.\\
=)

1 .

Table of Contents

Tuesday, March 16, 1993

Opening Session: 8:30am - 10:00am

Keynote Speaker: Dr. Bary Horowitz, Mitre Corporation 1
Acquisiion Pane: 10:15am - 12 Noon v
Moderstor: LTG Alorzo E. Short, Jr, DISA e 7
Luncheon: 12 Noon - 1.30pm :

Speaker: Donald Mullikin, FAA coovvneinniineenn.e, 3

Applications: 2:00pm - 3:30pm
Chairperson: Carington Stewart, NASA JSC

w1 Fast Analytical Simulation of Missile Flights - Y. Les, Nava!
Postgraduate School, Monterey, CA and J. V. Waite, Pacific
Missile Test Center, PointMugu, CA 8

12 Ada Application Prcgram Interfaces to X, 400 Prctocol
Services - C. A Eldridge, Spata, Inc., Mclean, VA 17

Student Papers: 2:00pm - 3:30pm
Chairperson: Dr. Martin Barret!, Penn State Harrisburg

21 Astrodynamics 101: A Case Study in Ada Object Based
Programming - R. Kovacs, University of Colorado <

22 Acchitectural Decomposition of Software Applications -
K Reese and G. Cort, Stockton State College 30

23 Teaching the Second Computer Science Course ina
Reuse-Based Setting: A Sequence of Laboratory Assianments
inAda -J. Grly. West Virginia University 38

Reuse: 2:00pr. - 3:30pm
Chairperson: Danist Hocking, U.S. Army Ressarch Lnbornbry

31 Domain Specific Sofware Architectures: A Process o
Architectura-Bas 2d Sotware Engineering - C. Braun,
GTE Federal Systems, Chantilly, VA and J. Armitage,
GTE Communications Systems, Pittsburgh, PA 48

32 Domain Engineering: Establishing Large Scale, Systemﬁﬁc
’ Softwars Reuse - W. R. Stewart and W, G. Vitaletii, Softech,

Inc., Alexandria, VA P 55
a3 A Practical Guide for Ada Reuss - R. H. Terry and
M. W. Price, MountainNet Inc., Morgantown, W 70
. Engineeting Environments & Emetging Standards: 4:00pm - 5:30pm
Moderator: Frank Balz, TRWoiiviiiiiiiennann, 80
Ada 9X Updste: 4:0Cpm - 5:30pm
Moderator: Chris Anderson, United States AirForce 81

Reuse Education: 4:00pm - 5:30pm :
Moderator: Dr. Chares Lillie, SAIC0.00 82

Vendor Hospitaiky Sultes: 7:00pm - 10:00pm

" Chairperson:

Wednesday, March 17, 1893

Opening Session: 8:30am-10:00am

Keynote Speeker: LTG Peter A Kindc.... 4
AdaSage: 9:00am - 10:30am
Mocerator: Joan McGarity, COMNAVCOMTECCOM 8

Government Training for Ada & SW Engineering: 9:00am - 10:30am
Moderator: Capt Dave Cook, US. AirFores 84

Software Reuse Cross Section: 9.00am - 10:30am
Moderator: JimHess, HQDA, 85

Education and Tralning I: 10:45am - 12:15pm
Chairperson: Dr. James Hooper, Marshall University

41 Using Ada for a Team Based Software Engineering Approach
o CS1 -'A Lodgher and J. Hooper, Marshalt University,
Huntington, WW. ..o 86

42 AComparison of Ada and C as Teaching Languages -
M. L. Barett and M. S. Richman, Penn State Harrisburg,
Middletown, PA o i 92

43 The TIPSE: An Educational Support Environmert for
Software Engineering Education - M. B. Ratcliffe,
M.F. Bott, T. J. Stotter-Brooks and B. R. Whittle,
University College of Wales, Aberystwyth, Dyfed, U. K. ... §7

Le Cycle Issues: 10:45am - 12:15pm
Dee Graumann, GDE Systems, Inc.

5.1 The Rapid Development Methodoiogy Applied to Software
Intensive Projects - L. G. Gref and W. H. Spuck, fli,
_ Jat Propuision Laboratory, Pasadena, CA 112

52 AFarmer's Guide to OOA: Harvesﬁng Requirements -
J. D. Boyken, B. K Mitchell and M. J. O'Connor,
Coleman Research Corp., Huntsville, AL e 121

“8.3 "7 "Ada Performance 'ssues in Real-Time Transputer Environments «—

R M. Plishka, University of Scranton, Scrarton, PA 127

Defense Software Repository §ymm Panel: 10:45am - 12:15pm
Moderator: Joanne Piper, DISA0. 135

Adt In Undergraduate Computing Education: Experlence & Lusonu
Leamed: 2:15pm - 3:45pm
Moderator: John Baidler, University of Scranton, 138

Programming in the Large: 2:15pm - 3:45pm
Moderator:

Reuse interoperability Group: 2:15pm - 3:45gm
Moderator: Jim Moore, IBM and Dave Dikel, Applied Expertise, 1, 138

Dr. Donald Mullikin, FAA 137

Education and Tealning 1l: 4:00pm - 5:30pm’
Chairperson: Murray Kirch, Stockton State College

81

8.2

83

Transition to Ada: A Cess Study - U. LeJeune und
M. Kirch, Stociton State College, Pomona, NJ Lee. 139

Thinking in Ada - How Some Students Experience
Their New Language - K. J. Cogan, Standard Amy
Management information Systems, Fert Belvair, VA 144

Intagrating Ada Into Real-Time Laboratory Teaching -
" R J. Bohimann, Valparaiso University, Valparaiso, 1M 150

Environments: 4:00pm - 5:30pm
Chairparson: Michael Sapentor, Telos Federal Group

71
Ervironment Standards (PSES) - T. Obemdorf C. Schmiedskamp, Chairpersen: §uun Markel, TRW.coineviniiieenne s 199
Naval Air Varfare Canter, Warminster, PA; and V. Squitieri, ' -
Space and Naval Warfare Systems Command, Wash, DC . 160 Luncheon: 12 :30pm - 2:00pm :
Speaksr: RADM Rotert M Moore, US. Navy [}
72 NICLS: A Natural Interface for a Combined Language . . o '
System - J. H. Gray, TRW, Inc., Hurtsville, AL and 81 Mathematics, Engineering, ‘and Softwars Development -
J. W. Hooper, Marshall Univarsity, Huntington, W 169 M.J.Luz, Fochester Institute of Technology,
Rochester, NYo oiiiiiniiiiieiiriieanaes 200
73 STRAda - A Software Tool for Distributed Ada - D. Bekels, i N
C. Bemon, M. Filali, J. M. Rigaud and A Sayah, IRIT, 8.2 Modeling the Total Costs of Miltary Software - C. Jones, .
Universite Paul Sabatier, France 184 Software Productivity Research, inc., Burlington, MA. 206
Software Re-engineering Panol: 4:00pm - £:30pm Futures Panel: 2:15pm - 4:00pm o v
Moderator: Jim Mohand, Naval Air Warfare Center ., 195 Moderator: Miguel Carrio, Jr., MTM Engineering 215
Author's Index ... e e s 216
PROCEEDINGS

Nm Generation Computer Resources (NGCR) Project Support

Thursday, March 18, 1993

Opening Session: © 30am - §: 15am
Kaynote Spoaker: € +Id Ebker, Federal Systems Compary, IBM . §

Process Orlmlod Reuse Experience to Date: 9:30am - 12:30pm
Moderator: Dr. Dennis Ahern, Wastinghouse Electronics

Systems Groupvvvirinieiiiiiieaaroaans 196

SEI Metrics Recom.nendations: 9:30am - 11:0Cam

Moderator: Dr. Robert Park, Software Engireering Instituts 187

Existing Re-engineering Tools & Capabliities: 9:30am - 12:30am

Moderator: Hars Mumm, NRaD 198

Current {ssues: 11:15am - 12:30pm

ELEVENTH ANNUAL NATIONAL CONFERENCE ON Ada TECHNOLOGY

Bound-Available at Fort Moomouth

" 2ad Annual National Conference on Ada Technology, 1984--(N/A)

3rd Anaual National Conference on Ada Technology, 1985--$10.00
4th Annual National Conference on Ada Technology, 1986--(N/A)
5th Annual National Conference on Ada Technology, 1987--(N/A)
6th Annual National Conference on Ada Tecknology, 1988--520.00
7th Anaual National Conference en Ada Technohgy, 1989--$20.00
8th Annual National Conference on Ada Technology, 1990--$25.00
%th Annual National Conference on Ada Technology, 1991--$25.00
10th Annual National Conference on Ada Technology 1992--§25.00
11th Annual National Conference on Ada Technology 1993--$25.00

Extra Copies: 1-3 $§25 each; next 7 $20 each; 11 & more $15
each.

Make check or bank draft payable in U.S. dollars tc ANCOST and
forward requests to:

Annual National Conference on Ada Technology
US. Army Communications-Electronics Command
ATTN: AMSEL-RD-SE-CRM (Ms. Kay Trezza)
Fort Monmouth, NJ 07703-5000

Telepnone inquiries may be directed to Ms. Kay Trezza at
908/532-1898.

Photocopies--Available at Department of - Comuerce.
Information on prices ar.d shipping charges should e requested
from:)

U.S. Department of Commerce
National Techaical Information Service
Springficld, VA 22151

USA

Include title, year, and AD pumber

2nd Annual National Conference on Ada Technology, 1984-AD
A142403

3rd Anaua! National Confetencc on Ada Technology, 1985-AD
Al164338

4th Annual National Conference on Ada Technology, 1986-AD
A167802)

Sth Annual National Conference on Ada Techaology, 1987-AD
A1;8690 :

6th Annual National Conference on Ada Technology, 1988-AD
A190936

7th Annual National Conference on Ada Technology, 1989-AD
A217979

8tk Aunual National Conference on Ada Technology, 1990-AD
A119™77

9k Annual National Conference on Ada Technology, 1990-AD
A233469)
10th Annual National Conference en Ada Technology, 1990-AD
A248007

1

Keynote Speaker
o -

Dr. Bvr rtz.
President & CEO
The MITRE Corporation

Dr. Barry M Horowitz is MITRE's
president and chief executive officer. He
served from 1987 through 1990 as
executive vice president and chief
operating officer, responsible for the
general management and direction of the
company's overall technical, financial,

"~ and administrative activities. Earlier, he

was group vice president and general
manager of the company’s eperations in
Bedford, MA, which are primarily in
support of the Air Force. Dr. Horowitz
became a inember of MITRE'’s Board of
Trustees in February 1989.

_ Dr. Horowitz joined MITRE in 1959 |
 at the company's Washington Center
located in McLean, VA, and held a

succession of positions from technical

staff to department head. Most of his
effort was devoted to air traffic control, in -

support of the FAA. During the period

“from 1969 to 1979, he became a

recognized leader in the aviation
community on the design of new collision
avoidanice systems. He led MITRE
efforts, which initiated the technical
approach for airborne collision avcidance
systems, currently being established as
a national standard. He also led MITRE
efforts that have developed advanced
enroute ATC automation conc..pts and

designs, and initiated an activity to build
a real-time simulation facility to evaluate
new designs and concepts for the FAA,
This effort resulted in what currently is a
major FAA resource for designing
advanced automation systems. He also
played a major role in the analysis and
regulation process that resulted in new

governmean® standards for independent:

IFR approaches to parallel runways.
During the period from 1979 to the
present at MITRE, Dr. Horowitz moved to
the company’s headquarters in Bedford,
MA, and rose in rank from Director of
Special Studies to his present position.

In addition to his management role, he

has been a strong persona! contributor to
a wide variety of initiatives in the area of

- strategic command and control. He is a

national authority on techniques for
managing engineering programs.

Dr. Horowitz received a BS in
Electrical Engineering from City College
of New York in 1965, an MS in Electrical
Engineering from New Yark University in
1969.

11th Annual Naticnal Conference on Ada Technology 1993

Acquisition Panel

LTG Alonzo E. Short, Jr. |
Director, Defense Information Systems Agency
Manager, National Communications System

Lieutenant General Alonzo E. Short, Jr.
was born in Greenville, NC on 27
Januar, 1939. He grew up in
Portsmouth, VA, where he aitendeq I.C.
Norcom High School. General Short
holds a BS in education from Virginia
State College and an MS in business
management from New York Institute of
Technology, Long Island, NY. He also
holds honorary doctorates from Virginia
State University and C.H. Mason
University, San Diego, CA. His military
education includes completion of the

~ Signal Officer Basic and Advanced

Courses, the Armed Forces Staff
Coilege. the Communications-Electronics
Systems Engineer Course, and the Army
War College.

Since entering the Army in Juns of
1962, General Short has held a variety of
assignments with progressively
increasing responsibility throughout his
career. '

assigned as a staff officer in the Defense
Communications Agency (now the
Defense Information Systems Agency).
Following that assignment, General Short
was a battalion commander in the 101st
Airborne (Air Assault) Division at lFort
Campbell, KY.

In 1979, he began a tour as a staff

11th Annual National Conference on Ada Technology 1993

In 1975, General Short was

glanner with the Army Communications
Command at Fort Huachuca. He then
served as Commander of the 3rd Signal
Brigade at Fort Hood, TX.

The General was then assigned
as the Deputy Commander of the Army
Electronics Research and Development
Command (ERADCOM), Adelphi, MD,
from July 1984 {0 October 1584. '

Ceneral Short was promoted to
Brigadier General concurrent with
assuming command of the Information
Systems Management Activity (ISMA)
while at the same time taking over as
Program Manager for Army Information
Systems, all at Fort Monmoutt, NJ. In
July, 1986, he became Deputy
Commander of the Informations Systems
Engineering Command (ISEC), and
Commander in September 1987.

General Short was promoted to
Major General when he became
Information Systems Command Deputy
Commander on 7 September 1988.
CGeneral Short then assumed command
of the Information Systems Command in
June 1990 and was promoted to
Lieutenant General at the same time.

In August 1991, General Short
became Director, Defense Information
Systems Agency/Manager, National
Communicaticns System.

2

Luncheon Speaker

, Donald E. Mullikin
Deputy Program Manager for Advanced Automation, AAP-2A
Federal Aviation Administration -

Donald Mullikin 'Is Deputy Program

Manager for Advanced Automation, AAP-
2A. Over a 20 year period, Dr. Mullikin
held key technical, program/project
management, and senior management
positions in the Department of Navy and
the Defense Intelligence Agency. He
joined the FAA in November of 1984 and
served in several technical and
management positions in the Program
Engineering Service. He joined the
Advanced Automation Program in June
1988.

Dr. Mullikin holds & BS in
Electrical Engineering, an MS in
Electrical Engineering and PhD. in
Electrical Engineering.

Prior to his current position, Dr.
Mullikin was the Assistant
ManagerManager, Advanced Automation
Systems (AAS) Division, Automation
Service, Advanced Automation Program,
FAA, Washington, DC. From July 1987
to July 1988, he was Assistant Manager,
Facilities Integration Divigion, Program
Engineering Service, FAA, Washington
DC. From November 1984 to July 1987,
Technical Advisor to Director, Program
Engineering and Maintenance Service,
FAA, Washington, DC.

From Apr! 1981 to November

1884, he was Assistant Deputy Director
for Defonse Intelligence Systems,
Washington DC. From June 1973 to
April 1984, he was Assistant Manager,
C3 Project Office, Naval Electrcnica
System, Washington DC. From
November 1968 to June 1973, he was
Systems Engineer, Command Support
Division, ASW Systems Project Office,
Washington, DC. From September 1966
to November 1968, he was Electronics
Engineer, Sonar Project Office, Naval
Ship Systems Command, Washington,
DC. From June 1964 to September
1966, he was an Enginesr Trainee,
System Effectiveness Secton, Naval
Ship Engineering Center, Washington,
DC. From September 1962 to February
1964, he was an Engineering Assistant,
Data Processing Division, Department of
Commerce Bureau of Census, Suittand,
MD.

———

L

\

Keynote S

eakef

, LTG Peter A. Kind
Director of Information Systems for Command, Control
Communications and Computers, Office of the Secretary of the Army

Lieutenant General Peter A. Kind is a native-

of Wisconsin. Upon completion of studies at
the University of Wisconsin in 1961, he was
commissioned a Second Lleutenant and
awarded a BS in Economics. He also holds

& MBA from Harvard University. His military

education includes the Basic Officer Course

- at the Signal School, the Communications

Officer Course offered at the US Marine
Corps Amphibious Warfare School, the US
Army Command and General Staft College
and the US Army War College.

He was assigned to the 97th Signal
Battalion (Army), 10th Special Forces Group
(Airbore) in Germany and as Signal Advisor
fo the 21st Infantry Division (Air Assaull) in
Vietnam.

Following duly as Assistant Division

- Signal Officer of the 82d Airborne Division

and as Exscutive Officer and S2/S3
(Intelligence/Operations and Training) for the
82d Signal Battalion, Fort Bragg, NC, he
served in the War Plans Division of the
Office of the Deputy Chief of Staff for
Operations and Plans, Headquarters,
Department of the Army. He commanded
the 1st Calvary Diviston's 13th Signal
Battalion, Fort Hood, TX and studied at the
Logistics Management Center's School of
Management Science. General Kind then
served as Chief of the Concepts and Studles
Division, Directorate of Combat
Developments at the Signal Center pr.or to
Army War College attendance.

He then served as Commander of the
1st Signal Brigade with concurrent duty as
the Assistant Chief of Staff, J6, US Forces in
Korea and G-6, Eighth US Army; as Director
of Combat Development, and as Deputy
Commanding - General and Assistant
Commandant, US Army Signal Center and

. School, Fort Gordon, GA. He served as
- Deputy Controller of the NATO integrated

Communications System Central Operating
Authority, NATO's equivalent to the US
Defense Communications Systems,

- headquartered at SHAPE, Belgium, and then

as Program Executive Officer, Command
Control Systems, Fort Monmouth, NJ.

He then served as Commanding
General, US Army Signal Center and Fort
Gordon Commandant, US Army Signal

School, Fort Gordon, GA and as -

Commanding General, US Army Information
Systems Command, Fort Huachuca, AZ prior
to his present assignment as Director of
Information Systems for Command, Control,
Communications and Computers, Office of
the Secretary of the Army, Washington, DC.
General Kind has been awarded the
Distinguished Service Medal, the Legion ot
Merit (with Oak Leaf Cluster), the Bronze
Star Medal (with 2 Oak Leaf Clusters), the
Meritorious Service Medal (with 2 Oak Leaf
Clusters), Air Medals, Army Commendation
Medal and Senior Parachutist Badge.

Keynote Speaker

“Gerald W. Ebker
Vice President, IBM
CEO, IBM Federal Systems

Gerald W. Ebker is chairman and chief
executive office of the IBM Federal

Systems Company. The company was

formed in March 1992 and is responsible
for iBM's operations with the federal
government. It is one of several |IBM
companies operating as independent
business units.” FSC is a major provider
of custom systems integration solutions,

services and product offenngs to

government customers.

Mr. Ebker.]ouned’ IBM Federal

Systems Division in 1963 as a
programmer on the Apollo space
program at IBM Houston. Until 1973, he
held a number of management positions
- while assigned to the space program.

From 1973 until 1976, he was
- program manager of the IBM advanced
control system project for automating oil
refineries. In 1977, Mr. Ebker was
named manager of software systems at
IBM Manassas, and in 1979 became

general manager of FSD's facility in

Gaithersburg, MD.

In 1981, he was némed FSD vice

‘president, Defense and Space Systems

and in 1983 he became FSD vice
president, Complex Systems. He was
named president of the Federal Systems
Division in January 1987 dnd became an
IBM vice president in February 1988. He
was named presndent of the Systems
Integration Division in April 1988 and
became president of the Federal Sector
Division in April 1990.

Mr. Ebker was amed to his
present position in March 11992.

In June 1992, he was elected to
serve a one-year term as chairman of the
Armed Forces Communications and
Electronics Association.

. Mr. Ebker has a BS in
Mathematics from Harding College and a
MS in Mathematics from Kansas State
University.

Luncheon Speaker

. RADM Robert M. Moore
Supply Corps, United States Navy
Commander, Naval Informatlcn Systems Management Center

Rear Admiral Robert M. Moore is
Commander, Naval Information Systems
Management Center. His responsibilities
include information resources (IR) planning
and policy related to the Department's
multibillion dollar information resources

budget. Additionally, he oversees IR-related

programs, insertion of new technology, and
acquisition of information resources.

‘A native of San Antonio, TX, he
received a BS from the University of Texas
and a MBA from Harvard University.

Commissioned in 1961, his early
tours included Supply Officer of the
Destroyer HYMAN and instructor at the Navy
Supply Corps School at Athens, GA. In
1964 he was selected for duty in the Naval

~ Nuclear Propulsion Program and in 1966

was assigned as the program’s contracting
officer at a division of the General Electric
Company at Schenectady, NY.

From 1971 tc 1973 RADM Moore
served as Director, Nuclear Equipment
Support Division at the Navy's Ships Parts
Control Center, Mechanicsburg, PA, and
following this, served a second tour in the
Naval Nuclear Propulsion Program where he
was in charge of the headquarters
procurement and new construction budget
functions.

He served as Supply Officer of the
Submarine Tender HOLLAND at Submarine
Refit Site One, Holy Loch, Scotland, from

1979 through 1981. He then served as
Assistant for Program and Budget, Aftack
Submarine Division, Office of the Deputy
Chief of Naval Operations (Submarine
Warfare).

In July 1983, RADM Moore became
the Vice Commander, Navy Accounting and
Finance Center, Washington, DC.

In July 1985, he assumed command
of the Navy Fleet Material Suppoit Office,
Mechanicsburg, PA. As the Senior
Executive of the Navy's largest Data
Processing System Development Center, his
duties included direct responsibility for three
of the largest Data Processing projects ever
undertaken in the Federal Sector.

His first tour as a flag officer was
Competition Advocate General of the Navy. -
RADM Moore was the Assistant Commander
for Inventory and Systems Integrity, Naval
Supply Systems Command from luly 1988 to
June 1991, He was responsible for Navy
Programs to upgrade and modemize the

-~ Navy Supply Systems which supports the

fileet throughout the world and led the
program to insure the accuracy and integrity
of the Navy's multibillion dollar logistics
support inventories.

RADM Moore's military decorations
include the Legion of Merit (five awards) and
the Meritorious Service Medal (two awards).
He is also qualified in submarines.

Moderator:

Panelists:

Acquisltlon Pahel

LTG Alonzo E. Short, DISA

FAST ANALYTICAL SIMULATION
OF MISSILE FLIGHTS

Yuh-jeng Lee
Computer Science Department
Naval Postgraduate School
Code CS/LE
Monterey CA 93943

Abstract

We present an air-to-air missile flight simulation
that has been designed and developed using the
Ada programming language with the object ori-
ented methodology. It was aimed at providing
a test and evaluation method that is more un-
derstandable, modifiable, efficient, and reliable
than earlier FORTRAN simulations. The prin-
ciples of abstraction, information hiding, modu-
larity, high cohesion, and low coupling were used
to achieve these goals. The resulting simulation,
a three degree-of-freedom model of guided air-to-
air missile, is an accurate mapping of the problem
space into software. The simulation is primarily
intended to study missile kinematics.

INTRODUCTION

The ever increasing cost and complexity of modern
weapon systems forces new demands on the test and
evaluation (T&E) process. More extensive testing is
required with fewer resources. This paper explores one
aspect of the T&E process as it relates to air-to-air
guided missiles.

In the early days of missile T&E (circa late 1940s),
missil. performance capability was determined solely
through flight test, that is, actual missile launches.
The realization that all the T&E data requirements
could not be met with a limited number of launches
led to captive-carry flight test, laboratory testing, and
simulation to complement the missile launches. To-
day’s data requirements have grown in response to the
increased missile sophistication and mission complex-
ity. It is not unusual for a single flight test to cost
more than a million dollars, Due to the increased data

John V. Waite
Pacific Missile Test Center
Code 1051
Point Mugu CA 93042

requircments and increased cost of flight test, missile
flight simulation is recciving more and more attention.

Missile Flight Simulation

There are three levels of missile flight simulation in
terms of cost and complexity:

o Real-time hardware-in-the-loop (HIL) simulation in-
tegrates actual missile hardware with special test
and instrumentation equipment in a laboratory envi-
ronment. The simulation software typically runs on
a high-speed special purpose computer that drives
the test equipment and missile hardware. The real-
time HIL simulation requires a major development
effort of approximately thirty-five to forty man years
and costs from five to ten million dollars!.

¢ The cecond level of simulation is the all digital six-
degree-oi-freedom (6-DOF) missile flight simulation.
Six-degree-of-freedom indicates that the simulation
computes forces and moments for all three axes. The
6-DOF simulation incorporates sophisticated mod-
els for various missile subsystems and runs on a
mainframe class computer. The 6-DOF runs many
times slower than real-time. For example, an ac-
tual missile flight that might take thirty seconds to
complete in real-time might take eighteen hours to
run to completion using a 6-DOF simulation. The
6-DOF simulation requires a development effort of
four to six man years,

e The third level of simulation, the main focus of this

paper, is the fast analytical simulation (FAS). Sim-
ulations of this class are a rapid and inexpensive
tool allowing missile systems analysts to study over-
all missile response or capability expeditiously. The
FAS is a three degree-of-freedom (3-DOF) simula-
tion, usually the forces are computed for all threc

9

axes (the moments are ignored) and a three di-
mensional space is represented. Alternately, a 3-
DOF might represent a planar two dimensional view
where forces acting on two axes are computed while
moments are computed about the remaining axis.
The FAS is intended to be easily accessible via per-
sonal computers to provide results in a timely fash-
ion. A user enters initial conditions and results are
" presented within a few minutes,

- Current Practices: Problems and

Limitations

Current simulations are usually developed by physi-
cists or aerospace engineers (who usually have lit-
tle or no training and knowledge in modern software
engineering principles), using the FORTRAN pro-
gramming language. Their main goal is “just to get
something up and running”. The resulting simula-
tions are almost always poorly structured and vio-
late most commonly accepted computer programming
principles. Typical characteristics of these simulations
are:

o The simulations are monolithic pieces of code using
many GOTO statements;

¢ most variables are treated as global;

¢ Common data arcas are used for communication be-
tween subroutines;

e cryptic variable names are used (FORTRAN vari-
able names are limited to six characters);

o the simulations are limited to very simple data struc-
tures {multi-dimensional arrays are usually the most
sophisticated data structures found);

e programming through side is common; and

o the simulations have little or no comments or formal
documentation.

The new analyst will usually require at least six

_months to gain a basic understanding of how the sim-
ulation works, even if he or she has an excellent un-

derstanding of missile systems. An understanding of
the simulation is critical if results are to be interpreted
correctly. It is not uncommon for the original devel-
opers of a simulation to move on to other jnbs, leaving
the analysts responsible for maintaining and modify-
ing the simulation. Changes in the production mis-
sile’s software or hardware, regularly occurring events,
must be accurately reflected in the simulation code.
Changes or patches introduced to the simulation code
invariably make the code more obscure and, more of-
ten than not, produce undesirable side affects or bugs.
Debugging these types of problems is incredibly time
consuming and difficult.

After numerous patches have been applied the sim-
ulation software becomes unreliable and inefficient.

Wildly different results are obtained for slightly differ-
ent initial conditions. The real-time HIL simulations
no longer run in real-time. The 6-DOF simulations
may take days to solve a problem and the 3-DOF FAS
simulations take hours - what once required hours and
minutes respectively. Disk and main-memory capacity
become issues. What was once a tool enabling scien-
tists and engineers to analyze complex systems has be-
come an unwieldy demanding burden of questionable

- value.

Consequently, they are difficult to understand and
modify, and inevitably become inefficient and unreli-
able.

Motivation and Goals

Given the current situation, what is needed is a
method that more closely represents the problem
space, allowing simulations to be developed that are
easy to understand and modify.

The major purpose of this project is to explore the
use of object oriented techniques using the Ada pro-
gramming language, in conjunction with contempo-
rary software engincering principles, to implement a
missile flight simulation. This simulation should be
easily understood in a reasonable amount of time and
readily accommodate change. Additional goals include
producing code that is efficient and reliable.

The Approach

We have designed and developed a fast analytical sim-
ulation (FAS) program, written in Ada, which is aimed
at providing a reliable and inexpensive tool that al-
lows missile systems analysts to study overall missile
response or capability expeditiously. The missile flight
simulation models a subset of the missile systems (in-
cluding the Autopilot, Airframe, and Guidance), the
kinematics (consisting of the missile dynamics and the
missile-target geometry), and the target. At the top
level view, the simulation computes the forces acting

~ on the missile (e.g., thrust, drag, and gravity) and from

these forces derives accelerations to compute the mis-
sile’s spatial trajectory from launch to target intercept.

By adhering to object-oriented design principles (in-
cluding abstraction, inheritance, information hiding.
modularity, high cohesion and low coupling), the re-
sult is an accurate mapping of the problem space into
software. Since the mapping preserves the real world
view of the problem, we believe that our simulation
program is more understandable, modifiable, efficient,
and dependable than earlier FORTRAN simulations.

OBJECT-ORIENTED TECHNIQUES -
WITH ADA :

The goal of object oriented techniques is to produce
software that is understandable, easy to modify, effi-

—————

7

’ I

cient, reliable, and reusable. Each of these character-
istics is elaborated below:

Understandability: This is critical to the manage-
ment of complex software systems. It is, without a
“doubt, the most important factor of a simulation to
the analyst responsible for maintaining the simula-
tion. The software solution (that is, the simulation)
should be an accurate model of the real world prob-
lem. Software can be thought of as being under-
standable on both a micro and macro level. Code
at the micro level should have a style that is very
readable. At the macro level data structures and al-
gorithms should be able to be identified as mapping
from the real world problem space. Understandabil-
ity also tends to be tied to the programming lan-
guage used and its richness of expression.

Modifiability: Well designed software should readily
permit change. Modification is usually required due
to a change in requirements or to correct to an error.
Changes in missile simulation code are required to
explore new concepts, or as a result of missile hard-
ware or software upgrades. Many changes are not
planned. Ideally, changes should not alter the fun-
damental architecture of the software solution.

Efficiency: Efficiency is the optimal use of two fun-
damental computer resources - storage space and
exccution time. Both of these resources are depen-
dent underlying hardware, yet both resources are
equally dependent on the software. An efficient mis-
sile simulation should provide better user response
and more functionality than an inefficient simula-
tion.

Reliability: The goal of reliability is to prevent fail-
ure, and to some extent, recover from failure in a
graceful manner. Failure in a missile simulation
might be defined as anything from a program that
crashes to a program that produces results that do
not agree with flight test data or produces inconsis-
tent results. A reliable missile simulation will pro-
vide results that are consistent with real world ex-
periences and give meaningful indications when po-
tential problems might arise (e.g., limits exceedec or
incorrect user input).

Reusability: The goal of reusability is to provide
software components to build software much the
same way hardware engineers build circuits from
standard off-the-shelf components. The develop-
ment of software systems can be dramatically re-
duced by using software components that have al-
ready been debugged and tested. These components
can form libraries of commonly used objects. Sys-
tems may be constructed from these libraries. These
systems then may be added to the library.

Object-Orianted Principles

Through abstraction, information kiding and modular-
ity, object oriented techniques encapsulates data and
procedural abstractions to form objects. Objects mod-
ularize both information and processing, rather than
processing alone. Object oriented techniques establish
a mechanism for (1) a representation of data struc-
tures, (2) the specification of process, and (3) the in-
vocation procedure. An ohject is an clement of the real
world mapped into the software domain. The object
consists of operations which act on data structures in
response to messages sent to that object from other
objects. The operations and data structures are hid-
den, that is the implementation details are unknown
to the user of the object. The interface to the object
is the only portion visible to the user. The interface
is a set of well defined messages that specify what op-
cration on the object js desired. Object oriented tech-
niques can aid sound software engineering principles,
These principles inclnde abstraction, information hid-
ing, modularity, loose coupling, and strong cohesion?,

Abstraction. Many of the problems found with the
missile flight simulations are due to their complexity.
Abstraction is a powerful concept that helps oue deal
with complexity. Abstraction concentrates on the es-
sential aspects of a problem, while omitting the details.
There may be many levels of abstraction constructer
when solving a problem. At the top level of a missile
simulation, abstraction would reveal the essential cu-
tities - the missile, target, and environment. Moving
to the next lower level of abstraction within the mis-
sile, this level might be thought of as being composed
of various subsystems, such as the seeker, the guid-
ance section, the autopilot, and the airframe. Mov-
ing to the next lower level of abstraction, arbitrarily
choosing the missile sceker for example, would reveal
the data structures and procedures used to model the
seeker. Only the lower levels of abstraction expose the
specific details of a solution.

Information Hiding. Information hiding conceals
the implementation details of a solution that should
not affect other parts of a system. Through informa-
tion hiding only the cssential aspects of a solution are
visible, while the implementation details or “how" of a
solution are hidden. Hiding low level design decisions
prevents the higher levels of abstraction from being
dependent on implementation details. This approach
aids abstraction and increase the modifiahility of the
solution.

Modularity. The importance of modularity in soft-
ware design has been recognized for some time. Ac-
cording to Myers®, “Modularity is the single attribute

11th Annual National Conference on Ada Technologv 1993

il

of software that allows a program to be mtellectualiy
manageable.” In monolithic software, such as the mis-
sile simulations, the number of control paths, num-
ber of variables and the overall complexity make un-
derstanding difficult. Ideally, software is decomposed
into modules along logically and functionally indepen-
dent lines. Modularity supports our notion of abstrac-
tion. High-level modules specify “what” is to be done.
Low-level modules specxfy “how” that action is to take
place.

Cohesion and Coupling.
tems can be thought of as having two important char-
acteristics, cohesion and coupling. Cohesion attempts
to characterize to what degree a module performs a
single function or serves a singl: purpose. A highly

‘cohesive module would be one in which the module

performs a single task that requires little or no inter-
action with other modules in a program. A module
exhibiting low cohesion would perform many different
functions and interact with a large number of other
modules. Modules that are highly cohesive are easier
to understand and are more amenable to change than
modules exhibiting low cohesion.

Coupling is measure of interconnection among mod-
ules in a program. Modules with high coupling have a
complex interfaces and make use of data or control in-
formation found in other modules. Modules with low
coupling have relatively simple interfaces and make
use of only the data or control information presented
by the interfaces of other modules. Changes made to
modules with low coupling are less likely to cause un-
wanted effects in other modules, that is the ripple ef-
fect is minimized. Like modules that are highly cohe-
sive, modules with low coupling are ea.sner to under-
stand and modify.

Inheritance. Inheritance is an object oriented con-

__cept that permits the organization, building and reuse

of software!. In a limited view of this concept, new
objects may be defined to inherit the capability and

functionality of other previously defined objects. The _

new objects may extend the capability and function-
ality of the original object by adding new capabilities
and functionalities. Conversely the new object may
be defined to eliminate or limit certain capabilities of
the original object. Cnce an object has been devel-
oped, it may be reused with minimal effort through
inheritance, reducing development time.

Object Oriented Methodology with Ada

Object oriented techniques build on sound software
engineering principles to encapsulate data and proce-
dures into objects. They capture the real world prob-

Modules in software sj's- ‘

s i X0 B, g g

lem space, map well into the Ada programming lan-
guage.

Ada Packages. The object orienteu philosophy
maps well into the Ada programming language. Ada
has a wide set of constructs for providing primitive ob-
jects and operations. These constructs serve to build
the implementation level of the objects. Ada’s pack-
aging concept is conceptually similar to objects and
provides the means to encapsulate objects. According
to Booch®, “A package is a collection of computational
resources, whlch may encapsulate data types, data ob-
jects, subprograms, tasks or even other packages.” An
Ada package consists of a specification and a body
The specification identifies the infermation that is visi-
ble to the user of that package. The package body con-
‘tains the implementation details of the package which .
should (and can) remain physically and logically hid-
den from the user. The specification and body may be
compiled separately to enforce the separation of the
specification or interface from the body with its im-
plementation details. The specification can serve-to
define the messages associated with an object. The
object responds in the appropriate manner to these
messages. These messages might map to function or
procedure calls and their input or output variables.
Ada packages can be used to provide reusable soft-
ware components. Packages of commonly required ob-
jects can form libraries where they may be withdrawn
and reused. - Ada’s generic unit feature supports, in

- a limited way, the object oriented principle of inheri-

tance. A generic pa.ckage serves as a template for an
object”. The generic object can then be instantiated
with all the features of the generic object, along with
any additional features required of that particular in-
stantiation. For example, a generic stack or list object
might be instantiated for each occurrence of a different
data type, along with the additional capabilities that
make sense for that particular data type.

Methodology. We used an object-oriented dev: clop
ment technique similar to that advocated by Booch®
and first proposed by Abbott3. The development prc-
cess involves five steps:

1. First, identify the objects and their characteristics
or attributes as they exist in the problem space. Of-
ten a concise problem statement is useful in identi-
fying objects. The nouns of the problem statement
serve to identify potential objects.

2. The second step is to identify the operations that
characterize the behavior of the objects identified
in the first step. These should be meaningful oper-
ations that can be performed on the object. Verbs
associated with an object noun in the problem state-
ment can aid in the identification of meaningful

11th Annual National Conference on Ada Technology 1993

L

e wmees sems eEE wems O GEEn GESSI WMESN GEDE 0 GHSSE 0 TNSE PRGN WOEE DA

RN

N

|
i

e

operations, During this step time and space con-
straints are formed to define the dynamic behavior
of the objects. The scope and ordering of operations
might be defined for example.

3. The third step is to establish the visibility of the
objects with relation to one another. This step at-
temipts to specify what objects “see”, and what are
“seen” by a given object. This serves to map the
problem space into the objects.

4. The fourth step is to define the interfaces to the
objects. To do this an object specification is pro-
duced which “forms the boundary between the out-
side view and the inside view of an object.” This
maps directly into the Ada package specification
construct.

5. The final step is to implement each object by de-
signing suitable data structures and algorithms and
to implement the corresponding interface from the
fourth step. Also at this step it is important to re-
main aware of the software engincering printiples of
modularity, high cohesion and low coupling. Note
that this whole process can be recursive, that is, an
object might further be decomposed into subordi-
nate objects. |

The key point of this method is the accurate map-
ping of the problem space into software. This map-
ping preserves the real world view of the problem, and
if done properly, tends to produce code that is eas-
ily understood. Object oriented techniques also lend
themselves well to the software engineering principles
discussed earlier. Through object oriented techniques
and sound software engineering principles, o?r goals
of producing a missile flight simulation that is easy to
understand, easy to modify, efficient and reliable can

be realized.
THE PROBLEM SPACE

An air-to-air guided missile is designed to be carried on
an aircraft and launched at an airborne target. After
launching the missile guides, using its sensors, on the
target to intercept. Air-to-air missile sensors may be
radar, infrared or a combination of both types. Once
the missile detects the target, it tracks and guides on
the target by generating steering commands that will
set a course to intercept the target. The missile flight
simulation attempts to represent or model the missile
and its environment.

The missile flight simulation models a subset of the
missile systems, the kinematics, and the target. At the
top level view, tne simulation computes the forces act-
ing on the missile (e.g., thrust, drag, and gravity) and
from these forces derives accelerations to compute the
missile’s spatial trajectory from launch to target inter-
cept. Figure 1 is a top-level block diagram of a missile

11th Annual National Conference on Ada

Autopilot

A

Guidance

Achieved

Accelerations

>

Airframe

Acro
Data

Thrust

Acro
Data

]

Commandecd

Accclerations

Missile
Dynamics

Initial

Data

Guidancc
Data

Missile
Target
Geometry

Inertial
Data

Target

Figure 1: Missile Flight Simulation

Technology 1993 12

flight simulation indicating the relationships of the var-
ious models. The missile subsystems are represented
by the Autopilot, Airframe, and Guidance blocks. The
blocks labeled Missile Dynamics and Missile-Target
Geometry compute the kinematics. The Target block
here represents u single target, but in most simulations
more than one target is modeled. The missile airframe
model, given iis achieved accelerations, computes the
forces acting on it for use in the kinematics model. The
kinematics model calculates missile dynamics and the
missile-target geometry, which is passed to the guid-
ance model Acceleration commands, which will en-
able the missile to intercept the target, are computed
by the guicance model and provided to the autopi-
lot. Th- autopilot responds with the achieved acceler-
ations, which are passed to the airframe model.

The Airframe

The missile airframe actuates or deflects the control
surfaces which steer the missile. The missile is mod-
eled as a rigid body and, as such, body and control
surface bendings are not represented. The airframe is
represented in terms of a reference axes system. Three

force equations describe the forces experienced by the

missile along each axis. There is one force equation for
each axis as follows:

TF:=m=sa,
2F,=mta,
YF,=m=xa,

These represent Newton’s classic relation that force i-
the product of mass and acce'eration. Here we resolve
the forces into components along each missile axis.

These force equations describe the dynamics of the
airframe. Aerodynamics is the science applied to pre-
dicting these forces, These forces are expanded in
terms of aerodynamic parameters and coeficients®.
For example, the x-axis equation becomes:

ZFr=mesa:=Fp+(Cda*agsS)4+(Cds»5xq»S)

. The first term in the above equation is the propul-

sion force. The second term is the product of the drag
coefficient for a given angle of attack (Cd,), the angle
of attack (@), and the missile reference area (S). The
third term is the product of the drag coefficient ‘or
& given control surface deflection {Cds), the control
surface deflection (§), the aerodynamic pressure (g),
and the missile reference area (S). The aerodynamic

- coeflicients are a function of angle of attack, control

surface deflection, roll angle and mach number. The
aerodynamic parameters and forces are provided to
the airframe model by the missile dynamics model,
and the autopilot model provides the commanded ac-
celerations as input. The airframe model computes
the forces it is “experiencing” and sends these values
to the kinematics model.

Kinematics

The kinematics model serves two functirns: to com-
pute missile dynamics and to compute the missile-
target geometry. Inputs to the missile dynamics fanc-
tion are the airframe forces computed in the airframe
model. From these values, and from initial conditions,
the dynamics model derives acceleration, velocity, po-
sition data, and flight-path variables. Angles, angular
rates, and accelcrations represent the inertial quan-

tities. These inertial quantities simulate the inertial -

sensor measurements the missile would experience.

Acrodynamic parameters, such as mach and veloc-
ity, are fed back to the airframe model. The derived
acceleration, velocity, and position variables are sent
to the missile-target geometry model. The kinem..tics
model also transforms data hetween the two reference
coordinate systems, that is, between the airframe ref-
crence system known as the body coordinate system
(z,y,z) and the autopilot reference system known as
the inertial coordinate system (X,,Y,, Z,)..

The primary purpose of the missile-target geome-
try portion of the kinematics model is to compute
the missile-target engagement geometry parametaors.
These values are sent to the missile guidance model to

steer the missile to the target. Inputs to the missile-

target geometry model are missile acceleration, ve-
locity, and position data from the missile dynamics
model, and target acceleration, velocity, and position
from the target model. These inputs are used to com-
pute range rate (closing velocity), missile to target
range, line-of-sight (LOS) rate, LOS, and time of flight.
The simulation is terminated on range or time con-
straints determined by this model. The computed in-

formation is sent to the missile guidance model.

Missile Guidance

The guidance mode! represents the missile guidance
law which determines what trajectory will cause the
missile to intercept the target. Missile guidance can be

classified by the type of sensor is used to provide tar-

get information. Common sensors are RF (radar), or
infrared (IR). A missile mnay use a combination of RF
and IR seekers. The actual missile guidance seciion
is very complex and sophisticated, hence, extremely
difficult to model. Most simple simulations assume a
perfect guidance section that uses a modified propor-
tional guidance law,

An important parameter in guidance is the line-of-
sight (LOS). The line-of-sight is the direction the mis-
sile “looks” in order to “see” the target. This is an
imaginary line from the missile’s seeker to the cen-
troid of the target. It has been proven that, given
constant target and missile velocities, if the LOS an-
gle between the target and the missile remains con-
stant an optimum trajectory will be achieved, result-

13 11th Annual National Conference on Ada Technology 1993

P

|
i

ing in A minimum miss distance!. I{ the LOS angle is
to remain constant then the LOS rate must be zero.
The LOS rate is computed in the guidance section and
multiplied by the navigation ratio N and sent to the
autopilot as comumanded accelerations proportional to
the LOS rate; hence, the term proportional guidance.

The commanded accelerations will change the mis-
sile velocity relative to the target velocity, driving the
LOS rate to zero. The response of the guidance sys-
tem is determined by the value chosen for the naviga-
tion ratio N. Most modern missiles improve upon the
pure preportional guidance law by using the target re-
lated information available through imptoved sensors
and increased on board computing power. Target re-
lated parameters used in addition to LOS include tar-
get range, velocity, acceleration and time to intercept.
Given guidance data, the guidance model computes
the commanded accelerations required to intercept the
target.

The Autopilot

The autopilot functions to give the missile stable and
controlled flight. The autopilot has its own axes refer-
ence system (Xg, Yq, Z,). The airframe motions about
the autopilot axes are controlled by the autopilot. Mo-
tions about the Ya and Xz axes determine missile di-
rection. The autopilots fc. these axes are termed the
pitch and yaw autopilots, respectively.

The autopilot receives commanded accelerations as
input and responds with achieved accelerations as out-
put. The achieved accelerations are based on the char-
acteristics of the autopilot and other missile subsys-
tems.

Target

The target model represents a simple maneuvering tar-
get. Inpy s are positional, heading, velccity, and type
of maneuver initial conditions. Inertial data are de-
rived from this data and output to the missile-target
geometry model. More sophisticated target imodels

might include multiple targets and targets capable of

complex maneuvers,

The Atmosphere

The Earth’s atmosphere is a dynamically changing sys-
tem, within which the missile must operate. The pres-
sure, density and temperature of the atmosphere de-
pend on altitude, location on the globe, the time of day
and the season. In order to have a common reference
atmosphere, a standard atmosphere has been defined
by the U.S. Air Force®. The standard atmosphere gives
mean values of pressure, density, and temperature as
a function of altitude. Most missile flight simulations
model the standard atmosphere.

11th Annual National Conference on Ada Technology 1993 14 '

)
4

THE SIMULATION

The models described in the previous section become
the Ada objects in the object oriented approach. The
relationz betweea the models are represented by mes-
sages between the objects. These messages can request
actions of objects or be in response to mesaage requests

" for action. Objects may be constructed from other ob-

jects. For example, a missile is composed of objects
that represent subsystems, This approach results in a
simulation that accurately maps the problem space to
software, as illustrated below. ,

The Contral Objects

At the highest level of abstraction, we wish to keep the
simulation independent of the domain of applications.
We might wish to simulate a power plant or missile -
our upper most level should not reflect what partic-
ular application we are using. Objects are necessary
to control or manage the simulation. By controlling
or managing the simulation we mean things like get-
ting user input, initialization, starting and stopping

.the simulation, and presenting data. The objects rec-

essary for these operations are identified as the FXEC-
UTIVE, APPLICATION, and USER.INTERFACE.
Each is briefly described below:

s The EXECUTIVE has no knowledge of what type
of simulation is running, it just sends a message to
APPLICATION to initialize the system and a mes- °
sage to the USER_INTERFACE to turn over control
of the simulation to the user.

o The APPLICATION object has the knowledge of
the specific details of the application in terms of
what objects exist and their interfaces. In vur sim-
ulation, this object is responsible for in‘tializing the
system, starting and manipulating the simulation
operations, and loggiag data. It also sends messages
to the MISSILE and TARGET objects, requiring
them to compute the mathematical derivatives that
characierize them.

o The USERINTERFACE object is required for user
input and output. It allows the user to the user
to control the simulation through keyboard input,
along with presenting run-time displays and simula- .
tion status information to the user.

. The System Objects

The system objects includes the missile, launcher, and
target objects. The launcher object provides the mis-
sile with launch aircraft information and targets pro-
vides target information.

One of our major software engineering goals, un-
derstandability, is achieved by implementing and dis-
cussing the core of the simulation in terms of modular
objects. This approach also serves to accurately map

15

the real-world probl.m space into the objects that form

the software solution.

The Missile. It includes the following subsystem
objects: AIRFRAME, AUTOPILOT, RF SEEKER,
IRSEEKER, and GUIDANCE. The AIRFRAME
contains further subsystems such as the AERO and
*THRUST. The missile subsystems serve as a good ex-
ample of abstraction, modularity, low couphng and
high cohesion.

The MISSILE object sends messages to establish

the missile’s physical characteristics (such as mass,
drag, thrust, and initial phase of flight), the launch
type, number of targets, number of stand off jammers

(S01Js), electronic counter measures (ECM) power,and . . .

gcomctrlc initial conditions (such as rangcs and head-
ing angle).

The AIRFRAME models the missile’s acrodynamic
characteristics and thrust characteristics. 7t initializes
the propulsion phase and various physica! constants,
computes the missile’s coefficient of drag and angle-of-

attack, and provides the thrust force and propulsion

phase.

The AUTOPILOT accepts commanded accelera-
tions and retarns achieved accelerations depcndcnt on
the body responses of the missile.

The function of GUIDANCE is to guide the mis-
sile to the target. Simply stated, given missile and
target position and velocity information, GUIDANCE
determines the required acceleration commands for the
niissile to intercept the target.

The missile uses its RF (radar) or IR (infrared)
seeker to get information about the target. At longer
ranges, the missile simply receives the RF energy re-
flected off the target from the launch aircraft’s radar.
At medium ranges, the missile’s on-board radar acti-
vates to provide target information. At short ranges,
the missile activates its IR seeker to acquire and track
the target in the terminal phase of flight.

The Launcher. The LAUNCHER object represents
the aircraft that carries and launches the missile. It
provides launch aircraft information (such as velocity
and position, and certain radar characteristics based
on the launch aircraft type) for use by the missile.
Other functions include providing the distance from
the launch aircraft to the target and the launch air-
craft’s velocity if it is in the pursuit guidance mode.

The Target. The TARGETS object models the air-
craft that the missile is to intercept. The Ada package
TARGETS is made up of four targets. Two of these
targets, target one and target two, are treated as the
primary targets, and targets three and four are treated

as stand off jammers (SOJs). The major task of TAR-
GET is to calculate the targets’ position, velocity and
heading angle dependent on target maneuver. Appro-
priate conditions are checked resulticg in the setiing
of flags and the times for the corresponding target ma-
neuver. Then the build-up time must be considered.
The build-up time is the time from the initiation of the
maneuver until the desired number of g’s is achieved.
This models the real world condition that commanded
mancuvers are not achieved instantaneously. The rate
of change of the target’s heading is then calculated
along with the number of g's the target is experienc-
ing. The current target heading angle is then com-
pared with the final desired turn angle. The target
velocity vector and mach are then computed. Finally,

the sccond target’s position is computed based on its

geometric relation with the first target.

The Support Objects

Modular design and information hiding allow the simu-
lation to be machine independent. Our simulation was
developed and implemented on an IBM AT compati-
ble machine. However, the simulation can be mod-
ified to run on other systems. To aid this process,
all the machine dependent code is implemented (hid-
den) in the SYSTEM.SPECIFIC object. Most of this
code is associated with the video display. By rewrit-
ing SYSTEM.SPECIFIC for the other hardware plat-
forms, and keeping the original message names, the
porting process should consist simply of recompilation
of SYSTEM.SPECIFIC and a link of the simulation.
Also by working at a lower system-specific level all
screen displays are outpnt in the most efficient manner
providing very fast screen updates. This prevents the
user from perceiving a delay as the screen is updated
or the next menu is displayed (problems experienced
in earlier FORTRAN simulations).

Other support objects include (1) INTEGRATION,
which performs the numerical integration of the MIS-
SILE and TARGET state variables, (2) MATH, which
provides external messages that perform all the ba-
sic mathematical operations required by the simula-
tion, and (3) REAL.MATRIX, which is the generic
object MATRIX_AND_VECTOR instantiaced for the
real data type, and provides a number of messages for
operations on matrices and vectors becausc many of
the quantities encountered in the simulation, such as
forces, are best expressed in terms of vectors or arrays.

Object Messages and Implementation

The Ada with clause allows a package (or object) to
access or view another package's specification. Pack-
age specifications define the interface to the package
in terms of data structures, function calls and proce-
dure calls available to the users of the package. In our

11th Annual National Conference on Ada Technology 1993

WU REE tees WEWN MEME MG DEDE O WEE OGN ENE MNEE

object oriented view, package specifications define the
external messages that an object can respond to by
eliciting some type of action or providing the sender
with information. Internal messages are the functions
and procedures that are in the body and not in the
package specification, and therefore are for the exclu-
sive use of that object.

A detail account of the actual FAS code wnd simu-
lation scenarios can be found in a repost by Waite!®.

CONCLUSIONS

We have explored using object oriented techniques and
software engineering principles in conjunction with the
Ada programming language to develop a missile flight
simulation. By using these techniques and principles
the problem space is accurately mapped into software.
This, along with the principles of abstraction, infor-
mation hiding, modularity, loose coupling, and strong
vohesion produced a simulation that is easily under-
stood, modifiable, efficient, and reliable.

Although understandability can be very subjective,
all of the missile analysts who reviewed the simula-
tion agreed that the code is much more casily under-
stood than previous FORTRAN versions. Modular-
ity, high cohesion, and loose coupling permitted the
simulation to be modified in easily. Modules were de-
signed to serve a single purpose and to make use of
only the data or control information presented by the
interfaces of other modules. All the interfaces are well
defined and are standard for that particular module. A
good example is the abstraction of the missile airframe
subsystem. By being modular and having a standard
well defined interface, this subsystem evolved from a
program stub to a fairly complex model with mini-
mal programming effort. Also by having a standard
well defined interface between objects or modules, a
library of different models can be built to explore dif-
ferent missile and target configurations. The simula-
tion is simply relinked with the desired module, This
allows a number of different models to be built rel-
atively quickly. These models then can be used for
comparison studies.

Through abstraction, information hiding, and mod- |

ularity a very efficient user interface was developed.
The simulation has also proven itself to be highly reli-
able, producing consistent results that agree with mis-
sile system expert’s predictions. The simulation has
also proven to be quite robust, surviving the most mis-
chievous users without crashing.

ACKNOWLEDGEMENT

We would like to thank Ted Finsold for his help in
providing technical assistance for missile flight simula-
tions. This research was supported by direct funding
from the Naval Postgraduate School.

11th Annual National Conference on Ada Technology 1993

REFERENCES

1. Eichblatt, E.J., Test and Evaluation of an Air-io-
Air RF Guided Missile, Pacific Missile Test Center,
1 July 1981.

2. Pressman, R.S., Software Engineering: A Prac-
titioner’s Approach, McGraw-Hill Rook Company,
1987, :

3. Myers, G., Composite Structured Design, Van Nord-
strand Inc., 1978.

4. Cox, B.1., Object Oriented Programming: An Evolu-
tionary Approach, Addison-V.cstey Publishing Co.,
1987. : .

5. Booch, G., Software Engineering with Ada, The
Benjamin/Cummings Publishing Company, Inc.,
1986,

. Department of Defense, “Reference manual for
the Ada programming language”, ANSI/MIL-STD-
1815A, Government Printing Office, Washington,
DC, January 1983. . '

7. Cohen, N.H., Ada as a Second Language, McGraw-
Hill, Inc., 1386.

8. Abbot, R., “Program Design by Informal English
Description™, Communications of the ACM, 1983.

9. Anderson, J.D., Introduction to Flight, McGraw-Hill
Inc., 1987.

10. Waite, J.V., “An Ada Object Oriented Missile
Flight Simulation”, M.S. Thesis, Naval Postgradu-
ate School, Monterey, California, December 1991.

THE AUTHORS

Yuh-jeng Lee received his Ph.D. degree in Com-
puter Science from the University of Illinois at Urbana-
Champaign. He is currently an assistant professor
at the Naval Postgraduate School. His research in-
terests include knowledge-based and autonomous sys-
tems, intelligent tutoring/training systems, automated
software construction, and computer simulations. Dr.
Lee is a member of the ACM, IEEE Computer Society,
and American Association for Artificial Intelligence.

(=]

Computer Science degree from the Naval Postgradu-
ate School. He is currently with U.S. Navy’s Pacific
Missile Test Center. His research interests include soft-
ware engineering, object-oriented programming, and
computer simulations.

John V. Waite rgceived his Master of Science in

To

Ada Application Program Interfaces to X.400 Protocol Services

Charies A. Bidridge,
Sparta, Inc.
7926 Jones Branch Drive. Suise 900
McLean, VA 22102

Summarcy

: This paper describes the design and development
of soltware 0 imchmem Ada Application Program
“Inwrfaces 10 X.400° messnge handling services. This
development makes it possible ©0 use Ada as 8 building
block of future mail enabled upplications that send and
: r reccive clectronic messages viia X.400 message handling

systcms. The software architccture in which these APls
: arc 10 be used includes (1) the application progrun that
| creites, sends, receives, wnd processes electronic
| mwssages. and (2) the message bandling services which
arc provided with a standanlizod AP! competible with C
language progmmming. We report the development
process and discuss the long-range knpacts and lessons
| bearmed from this development. The impacts include &
significant reuse potential. The lessons concen the
prospects for complcte Ada developments versus API use
88 in this development.

Introduction

‘ Ada Application Propram Intesfaces (AP1s) o
X.400 services provide the procedure interfaces and dats
definitions (o enable application programs to sead and
feceive X400 eloctronic messages. ‘The development of
Ada APls to X.400 services is motivaed by two
important mandates for US Federsl Government
coshpating and network communications - Ada language
use in sotware development, and wee of International
Standards Organization / Intcrostional Telegraph and
Telkephons Consultative Commistes (1SOOCITT)
proiocols for the oxchange of data between computer
systcms. ‘This latter mandate falls under the Government
Open Systems Intercoanection (OST) Profile, GOSIP,
Anuther motivation for Ada APls t0 network services s
the demand for distributed applications. Major ones
include electronic mail, tcloconferencing, and filo
tranxfers.

A

X400 services sre wsed for exchanpge of
electronic mossages, including text and other dats formats
via distribnsed mesaage handling sysiems. These scrvices
operaie mwxh like postal symems. providing writer-o-
reader services, using multiple store-and-forward points.
Delivcry can be to a user terminal, Lo & user's file store, 10
8 Ixcsimile device, ar even as hardoopy Uwough a
cooperating physical delivery service,

To date, Ada has not had widespread use in
conjunction with ISOXCCITT prowocols. Where US
QOovernment policy dictaes that Ada must be used as the
development language and thaet ISO/CCITT prosocols
must be used, per the GOSIP, there is a serious
deficiency. One sim of the work reported here is 0
remedy this deficiency.

The X.400 AP1s described here are designed ‘or
developing “user agent™ (UA) applications that interact
with the X400 message handling systema. User agents
sbmit and retricve messages during sessions with
“mesmge transfer agents® (MTAs). A set of Ada APls
will be egpecially usefid ©© agencies that dewelop or
scquire user agents whose dovelopment must be in Ada
for reasona of mission criticality, required trust, exc.

The sclected Ada APls are the projection of the
X400 APT Association's (NAPIA'S) 1990 C language
specifications ino the Ada language. These Ada APis
wns deflnitions of message system procedures and dua
objects (i.e., messages and message component objects)
fsomorphic 10 those of the X APIA, in onder 10 facilitate
eazy binding 0 software products tha coafoem 0 the
XAPIA specification. Therefore, this work establishes a
major basis for software reuse, enabling users 10 develop
message agents in Ada, that can interwoek with COTS
message bandling components,

mm' .
Mouel of Qpemtion

The X.400 protocol standards Jefine a model for
elecronie mail, as illustrated by Figure 1. The model
dctines User Agents (UA3) and M=ssage Transfer Agents
(MTAs). UAs assist users in composing, submitting, and
reiricving mail, and they allow users to interact with the

. Message Transfor System (MTS). The MTS is composed

of one or more MTAs. An MTA accepts submitted
messages from UAs for delivery to other UAs and
delivers to UAs mail received from other MTAs.

BAR Py W0 W

Figure 1.
Ada APIs in Message Transfer System

The Ada APIs providc access to X.400 Message
Transfer Systein (MTS) services. These APls are
pruvided as a library of routines that are used by a user's
application code (through the use of the Ada "with®

““dircctive). This combination of user's application code

and API library may be thought of as an X.400 User
Agent (UA), where the user code calls upon API services
to submit and rctrieve messages from the MTS. Figure |
also depicts the relationship between the Ada APls, the

-UA and the MTS components.

X.400 P2 is the protocol that prescribes the
format of messages exchanged between two UAs. It
includes the mcssage originator, recipients, subject, text
bouly, etc. X.400 P1 is the message format used between
two MTASs; Pl i3 regarded as an envelope that includes
the P2 messages,

To interact with an MTA, the UA must first open
a scssion, A scssion is & sct of message submission and
reuricval transactions between a UA and an MTA. A UA
submits a messaae to the MTA for delivery to another UA

by placing the messags oa a submissicn queve
("SubmitQ” in Figure 1). Once the message has been
piaced on this queuve, the message is under the contred of
the MTA. The MTA may relay the meszage (o A remose
" MTA or may deliver the message to a local UA. A UA
may submit any number of messages during a session.

: Messages must be retrieved from the MTA by
the receiving UA. When a message is received by the
MTA, the MTA places the message on a retrieval queve
("RetrieveQ"). The reocwmg UA takes responsibility for
& message, during a session, by removing it from the
retricval qucue. The UA may also interact with the
retrieval queue by querying for the number of currently
available messages or by issuing a "wait" that causes the
UA to0 suspend its processing until a message becomes
availuble,

Once a UA has finished submitting and

* retrieving messages, the UA may close the session with

the MTA, After the scssion is closed, the UA may no -
longer submit or retricve messages. Messages that were
in the submission queue when the session was closed are
still sent by the MTA. Messages in the retrieval queue
and delivery notices can be remeved when a new session
isopcned.

To summarize, the Ada APIs include procedres
fot the followmg
- gpen a session with the message handling service;
- glose the session with the message sexvice;
- submit a message for delivery; '
- gance] a previously submitted deferred delivery
message;

- staqt-retricyal: removcamessageﬁmrmemval
queue, accessed by the message sequence number;

- finish-retrieyal: replace the message in the retrieval
queve, or discard the message;

- ' size: obtain the number of messages in the retrieval
queue;

- wait await arrival of a msage in the rctrieval
queve;

Relation to Standards

These Ada APIs were designed to meet two
goals: (1) 1o make X.400 services accessible to Ada
applications; (2) to provide specific AFIs that can be

S
RN

easily bound to XAPEA-compliant message handling
sofltware. By adhering to XAPIA standards and by using
XAPIA message handling software (2), these APIs
provide access to X.400 protocol services (1).

The Ada APIs and data objects are compatible
wilh commercial message handling software systems that

- adhere o X.400 protocol standards. Therefore,

applications using the Ada APlIs can exchange electronic
messages with a wide mange of other applications, via
X400,

The Ada APIs can also be used with non-
XAPIA-compliant message handling software, such as the
University College London's PPZ, In this case, additional

procedures arc nceded to work between PP's APIs and the

standan] APlIs. Figure 2 illustrates the two architectures
for the use of thc Ada APIs to X.400 services.

Figure 2. Two Architectures for X.400 Use
Dxyclopment Approach

Ada Use To accomplish this dévelopmem. we

rclicd heavily on Ada’s support for object oriented -

programming, including data abstractions and packages.
We also relied on Ada's pragna interface for access to
extcrnally-provided X.400 protocol services (e.g., from
Mcssenger 400 or from PP), Separate Ada packages

“contain the procedures for interacting with the message

bandling service, for defining message objects and for
managing message objects.

This initial use of Ada o support nicssage
handling objects is simplified by the XAPIA's very clean
scparation of functions and data objects. The XAPIA
objcct specifications are based upon an inheritance
hicrarchy, but we developed specific objects only for

/
\
-
\
~

certain classcs (messages, addresses, distribution lists,
ex.). oL

Objects Messages are the top-level objects that
are passed across the APls, Messages contain other
objects such as distribution lists, recipient addresses,
originator addresses, etc. These objects in turn contain
objects for the address components (Country,
Organization, Surname, etc.). The XAPIA specifies this
Jevel of object definition; moreover, the message objects,
g0 far, are passive and contain only attributes, not

methods. The re-use potential of the object-oriented

approach will be realized immediately during the
development of mail-enabled applications. ‘

Standard routines to manage objects can be used
for both general and special objects as needed by mail
enabled applications. For example, future mail enabled
applications will likely include provisions for audio and

video message parts, in both teleconferencing and non-

real-time use. The object oricnted - programming
techniques will be increasingly useful in future mail

Ux.nLSmim.ﬁnnEmmaLMém Early
project constraints delayed acquisiion of XAPIA
compliant message handling software, Therefore, the

~ first implementation of Ada APIs for X.400 services uses

the public domain PP message handling software
developed by the University College London, which in
fum uses protocol services from ISODE (public domain C
language implementations of ISO protocols). PP and
ISODE are now supported by the ISODE Consortium.

Ideally, it will be very simple to bind services
provided by commercial software developed in
accordauce the XAPIA specifications, to the Ada API
software, via a small set of interface pragmas,
Significantly, our use of PP, whose APIs are not XAPIA-
compliant, also shows the use of Ada as the building
block between APIs based on the XAPIA specifications
and APISs particular to PP.

Iest and Demonsiration To exercise and test the
APTs, we developed several simple application programs
that manage objects and exchange them via the APIs.
These were demonstrated over a local area network. An
Ada application program creates and manages message
objects, opens and closes sessions with a message
handling service provider, submits message objects to it,
retricves message objects, and manages the contents of
the message retrieval queve. The submitted and retrieved

- ‘ - .
L . e i " H . .

mcssagéc were exchanged with another Ada application
program, via PP message handling services, across the
locul area network.

E\lﬂhﬂ.ﬁlmri:m

The XAPIA-based approach is currently proving

its rc-uss potential, in the development of a mail-enabled
application program for teleconferencing.
Teleconferencing is a much-needed and heavily used
military command-center application. In its current
wersion3, it is not based on Ada, and it uses a command-
line interface. Users receive messages from the floor,
through a chairman. The mail-enabled teleconferencing

uscs the Ada APIs to X.400 services to exchange
messages between conference participants, and it interacts
with users via X window services,

Most tcleconferencing applications rely on real-
tisne protocols. However, the performance of prototype
systcms using PP allowed submitted messages to be
retricved within about 1 second by recipients. Therefore,
X.400 services were chosen because they can provide for
the other pritnary needs of a tcleconferencing application,
including basic message delivery, delivery to multiple
recipients (i.c., the teleconfercnce participants), delivery
to conference records, etc.

We developed the application based upon the
APIs described above, according to the model on the left

hand side of Figure 2. We developed bindings as shown

in that figure; code for these is simple and short. In other
words, we wcre able to reuse the core work of the initial
devclopment, but did not reuse the mapping procedures
shown in Figure 2.

We uscd vendor-provided bindings to XView
window services to create and manage window objects,
In particular, "button” objects cause specified functions to
be cxecuted when the batton is pressed. For the
telcconferencing application, these functions based on the
Adu APIs to X.400 network services to perform message

handling services in responsc to user actions. For

example, the "Send” button activates a procedure that
coliccts text from a text window, and then constructs a
message to the teleconference that uses this text as the
"Content”, and finally invokes the "send” APL.

In summary, the approach of using Ada APIs
aliowed us to develop an Ada application that makes use
of up-to-date systems for both message handling and
window management.

This work developed software resources
intended specifically for re-use, with a very high leverage
potential. This potential has been confirmed by early
expericnce in actual re-use. This section will briefly
discuss additional implications based on the development
experience, and based upon projecting re-use in
potentially large or critical applications.

Development Lessons

Complexity This development showed utility of

v development based upon standards, rather than more

abstract requirements. The literal software requirements
were quite bounded and not subject to change during the
development. This fact constrained the growth of
software complexity. '

Using automated tools, we tracked the following
oomplemy metrics during the development

- Cyclomatic Complexxty the complexity of ihe
program execution graph;

- Total Operators and Unique Operators (Ada language
operators, syntactic elements, etc.), and

- Total Operands and Unique Operands, .

Initial measurements were made on the Ada
compiled Program Design Language (PDL) version. The
complexity grew subsequently as various interface
methods had to be developed, and as some functions were
re-implemented inside more than one package. The
Cyclomatic Complexity grew from 75 to 450; the total
numbex of operators grew from 8,000 to 10,000; the total
number of operands grew from 500 to 6,000. The number
ofhnwofcodegrewﬁom600w2600 R

The particular solutions necessary to obtain a
workable interface and functional translation between the
XAPIA functions and those offered by PP were the
greatest contributors to software complexity.

Fault Deasiiy We found that fault identification
and repair in the development process worked reasonably
well — (o enable the software to pass the Formal
Qualification Tests. The density of faults from this basis
(identified during development and review, and
subsequentiy corrected prior to Formal Qualification
Tests) was about 10 fanlts per 1,000 lines of code. This is
less than might be expected from expert's expericnce4 -
20-25 errors per 1,000 lines of code.

Severul advantages worked together against
faults: stable requirements, siable design, skilled,

intelligent development . staff, and a test-and-

deinonstration covering a lot of execution paths, Had any

of these becn absent from the development, it is likely

that significantly more faults would be experienced.
|m|\!'|£m'mns {or Futuge Use
The above-described dcvciopinent of the

telcconferencing application can be a useful modet for
development of mission-critical command and control

applications in Ada in which software verification is

important. The APIs allow the application to use services
of software dcveloped elscwhere; they are essentially
input-output scrvices. The mission-critical functions,
such as message validation, release subject o

authorizations, authentication of senders, etc., can remain |

the responsibility of the Ada application. The use of Ada
APIs can significantly reduce the effort needed to verify
the application software as necded for military command
and control applications.

The suggested model for future developments
involves stable standards for the APl to fumnished
services, such as message transfer, retrieval, and window
management. The stable APIs would be a key for the
widcspread usc of the services fumnished via utility
software and would free developers and verifiers to
concentrate on functions essential to the application.

Conclusions

: ‘Ihisworkiésigniﬁmmbecauseitismeofﬂne
first developments for Ada use of the International

Standards Organization's Open Systems Interconnection

(OST) communication protocols. It is now a Federal
Government mandate to acquire OSI in new
information systems,

This work demonstrated the use of two different
X400 message handling software systems by Adu
_application programs, plus the use of X-window services.
This expericnce shows the power of the use of standard
APIs for generic services. Develops can concentrate on
the functions essential to the application can use
gencric services of extemnal or utitity so! by means
of the APIs,

This work also demonstrated the potential of
X.400 message handling systcms to be used not only for
message c¢xchange, but for near-real-time

teleconferencing as well. Despite the involvement of the
disk file system, message transfers could be accomplished
in approximately one second, sufficient for
teleconferencing use.

Ada served as the primary building block
throughout the developrments described above:

1. it was the basis of mapping between the specified

XAPIA APIs and the APIs for the public domain PP
message handling software;

2. it was the basis of message object management
utilities to be used with the message object
containment hierarchy; and

3. it can be the basis of message processing for future ‘
mail enabled applications themselves,

Acknowledgements:

The author wishes to acknowledge the work of
Triet Lu, of SAIC, Inc. and of Curt S. Kuhn, and Gordon
BE. Lce, SPARTA, Inc. for their contributions to the
development of the Ada API software. This work was
spoasored by the Defense Information Systems Agency,
Defense System Support Agency. The author also wishes
to thank Mr. George King of that agency for support,
direction and encouragement.

References

IThe International Telegraph and Telephone Consultative
Committee, "L'ata Communication Networks
Message Handling Systems. Recommendations
X.400 - X.420", 1988,

ZKille, S.. i :
OUIPU Systems (Artech House, Boston, 1991).

3Worldwide Military Command and Control System
(WWMCCS) Standard System Software. See Joint
Data Systems Support Center Technical
Memorandum TM 245-85, "WWMCCS
Intercomputer Neiwork (WIN) Telnet,
Teleconference, and File Transfer Service User
Guide.

» 4Gilb, T., Software Metrics (Winthrop Publishers, Inc.,

Cambridge, MA, 1977), p. 57.

4

K-

. 7 .

"

Dr. Charles A. Eldridge, Sparta, Inc., 7926 Jones

- Branch Drive, Suits 900, McLean, VA 22102, emuil:

*eldridge@spartn.com”. Dr. Bldridgs is Principal System

*. Analyst who carned & P, D. in 1975 at Yale University.

He has worked as a software developer and researcher in
scientific computing, computer commaunications and
related areas for the past 16 years. Ha has also been
employed by Correll University, Systcm Development
Corp. and the MITRE Corporation.

S AR R S o TS b e e N

ASTRODYNAMICS 101,
A CASE STUDY IN ADA OBJECT BASED PROGRAMMING

Roger V.Z. Kovacs
Graduate Student, University of Colorado at Colorado Springs

Abstract
A course of studies toward a Masters of

~ Engineering, Space Operations was pursued A required
- prerequisite for this degree is a single programming class

in Ada. This prerequisite was completed at the
University of Denver, taking the graduate level Ada
sequence. Shortly after completing the Ada curriculum,
my employer arranged for me to attend an in-house
Object Oriented Analysis class (using the
Shlaer/Mellor[1) methodology). These classes, along
with my work in the aerospace industry, emphasized the

importance of Ada. A personal decision was made to

complete all astrodynamic assignments in Ada and
develop a reusable library of components. The programs
were developed for the classes in Orbital Mechanics,
Launch & Re-entry, and Astrodynamics. Although Ada
is a required prerequisite, I believe that I was the only
student out of the 30 or so students in my classes using
Ada for the assignments. Other students used C,
FORTRAN, and Pascal. While new to Ada, I was able to
easily keep up with my colleagues, demonstrating that
Ada and its various unique features are not difficult to
learn, nor the cause of schedule delays. ‘This experience
provides some insight into problems existing in the Ada
community. The case study serves as a starting point for
others considering the use of Ada in their educational
pursuit, as viewed by an engineering student outside of
the computer science discipline. It can be used for
discussions on the advanced topics of Ada, i.e., how to
implement a project, good and bad methodologies,
limitations, and allowing students to learn from other’s

.~ attempts.

Education

For a large corporation to bid on socne
government contracts which require the use of Ada, the
company has to identify its resources including the
number of Ada programmers. The accepted definition of

-a trained Ada programmer is 60 hours of classroom

training and 60 hours of hands on experience. This
provides a very minimal education of Ada. - Completion
of this type of training provides the student with the basic
understanding of the syntax and little more. I was
fortunate to receive my Ada education in a fast paced
environme.t of graduate computer science students. We
approached the subjects of object philosophy, generics,
.-« tasking in a detailed manner as implemented in Ada.
The curriculum for this sequence of classes included the
dining philosopher problem using a state machine and
arra, f tasts for each of the obj=cts. It became an eye
opene- ¢, to the amount of processing that can be
accomplished with so little code. :

The most common student in an Ada class is an
engineer with experience usually in FORTRAN, whose
employer is considering the use of Ada. His/her
engineering discipline may vary but for the most part it is
applied outside of the computer science field. Typical
disciplines are controls, navigation, guidance, or
structures. These engineers leave their work assignments
for a few weeks to receive Ada training. When they

return to *heir jobs, and only when required, they begin

to write in Adatran, Ada that looks exactly like the
FORTRAN that they were previously using. The code
uses "common blocks®, no generics nor tasks, and is
usually contained in one package.

The fault does not lic with these engineers. The -

system only provided time for learning a new syntax, not
a new software engineering methodology. One of the
philosophical goals of Ada is to improve the overall
education in software engineering. This case study
attempts to utilize some software engincering training to
create an Ada software model based on more modern
techniques and methodologies. '

a is Lackin;

Many of the best features in Ada such as generics are
underutilized due to the fact that standards and literature
describing how to create a good generic are lacking.
While this case study will not establish a standard, it may

1l1eh Amemien 1 WMaesamal f'.-—fa--q-a aw Ada Tanhaalane toa2

\
A

-

\

R
s

7

\

i

contribute to the discussions and interests of other
students to review, criticize and improve on the miodels
developed in this case study. ‘

The basic concepts of object oriented
programming seem so abstract when attempting to tackle
a problem in astrodynamics, but after many revisions, it
ends up being very logical.

A Good Starting Point

This case study provides a complete working
mode!l that can be expanded, modified, corrected,
improved, or discarded completely. However, it can
provide that start necessary for discussion. In addition, it
may provide some reusable components that an
engineering student may find helpful in pursuit of their
cducation. It should provide a challenge to educators and
students to solve the problem in a better way.

Obiject Oriented Based Design/Code

Not everything in this world is black and white,
nor should the standards on the best way to code.
Software engineering, and engineering in general is a
process or method used to solve a problem. There may

exist an infinite number of possible solutions, but the

engineer must decide on one solution which is a cost
effective, safe, and practical solution. This usually
results in a compromise. One piece of code cannot
necessarily be the do-it-all for every application. Real
time simulation engineers have different requirements
than that of simulation engineers needing to work with
very high fidelity models. The engineer is now tasked to
not only solve the problem for today, but also for the
future. To develop a reusable component, it must be
practical, efficient and maintainable.

Practicality means case of use. A complex
generic routine using access types of records just to add
two numbers would overwhelm anyone, even if it could
be used by anyone for anything needed to be added. The
component must first make sense. To make every object
a limited private to enforce the highest levels of
encapsulation and hiding may not provide a practical
solution. Ease of use must be considered for the current
and future users. Most engineers prefer to use
assignment statements for their operations so that the
code looks like the equation in the text book. For
example, if the following equation is desired:

R o e stk

TheAdgwouldlooklikethecodefragnmtinﬁgure 1L

r ;= NORM (Stzte_Data Posttion);
v := NORM (State_Data.Velocity);
g_vec := (1.0/MU)
* (((v™2 - MUIr) * State_Data.Positicn)
<{(State_Data Postion*State_Data.Velocity)
*State_Data Velocity)) ;

where .Position and .Velocity are arrays, the
"em {5 a dot product between vectors, and a
scalar * vector multiply as overloaded. The "-"
is a subtractjon between two vectors, resulting

in a vector.

Figure 1, Sample Ada Equation

Limited privates, since they exclude assignment
statements, do not permit functions as operations on their
objects. The above example using limited private types
would have an unnatural look to the engineer forcing the
use of COPY or ASSIGN procedures. However, limited
privates do have their place and shculd be used when
practical.

Practicality also gives the engineer the choice
when to make something very "object oriented” or
function oriented. Examples are the
Generic_Elementary_Functions{2] and the

- Generic_Linear_Functions. The linear functions for

example could have provided very encapsulated private
vector and matrix types. An engineer would have gone
crazy using the package functions set and get to obtain
individual values from the elements of the vector or
matrix. Anticipate the common usage of the component,
or it will be re-written or unused.

Efficiency led to the creation of many similar
functions encapsulated into a single package. A good
example of this is the gravity model package, "Gravity.”
This generic package contains many different models of
the earth's gravitational acceleration. It is expected that
only one of the models would eventually be utilized after
instantiation. This provides the user a selection of
fidelity verses speed with little overhead. It would have
been possible (and I plan to add one in the near future) to
write a routine that would have a parameter selecticn as
to the order of the gravity model. This, however, would
have caused inefficiencies for the real time user and
minimized the reuse.

Maintainability is the most difficult aspect. The
code must be written in a familiar form such as the
equivalent to equations in the text books. Documentation
must be maintained along with the code. Object oriented
techniques did help provide an expandable set of

_ packages from which to work. It also made for the most

11¢h Annuel Natinnel PAanfavansna an Ada Taahealane 14002

2 07

25

difficult decisions, when attempting to implement a
different interface/method for a complete generic
package. For example, it is not necessary to declare a
matrix type just' to instantiate the linear functions
package if all that is needed was to manipulate vectors.
Changing the package to a nested implementation where
the matrix was a generic package within the vector
packaged caused more changes that I had planned.

Unfortunately (or for those in the business
fortunately), maintenance is a ncver ending task, and
attempting to improve the case study by changing the
interface/implementation to a different scheme s
difficult. There is more than onc correct way to
implement this code, and perhaps over time the optimal
will be discovered.

Validated Compilers

It is interesting to observe the types of bugs that
exist in some validated compilers. 1 am convinced that
the validation suite was developed by Atatran coders.
Mos. all of the bugs in the compiler that 1 have
discovered were from the generic. implementation .of
"objects". These errors were not- exercised in the
validation suite. Some of the choices made during the
implementation of this case study were due to work-
arounds in the compiler, not due to good engineering
practices. ‘ :

‘ Examplés of compiler bugs are worthy of
review. I was able to instantiate a generic package to
make a function visible.. That function would work
normally in the routine in which it was instantiated, but I

was unable to pass that function as an generic actual .

parameter to another generic package although functions
not declared in instantiated packages did pass as
parameters correctly. This initially prevented me from

instantiating a linear function package then passing these -
functions as parameters to othef generic. functions. ™

Another example was the inability to utilize enumeration
types passed as generic actual parameters. I could not
even instantiate Text_IO.Enumeration_I0 using
enumeration types due to these generic problems. In
some cases these enumeration problems passed through
the compiler and prevented linking or just created code
errors. Another example was the inability to pass an
array type which was declared in a generic package as a
formal parameter into another generic package.

I felt that I was the only person using
enumeration types and generics. However, 1 was
extremely pleased by the compiler vendor fixing the
problems and sending me a beta copy to continue work.
This is the type of support that would be expected on a

big budget industrial project, but very happy to say it was
also provided to an individual trying to complete a
homework ussignment.

Other difficulties are cost and capability of

compilers on personal computers. This cnde is not that

complex, however, most of the "educational” compilers
cannot compile this code due to "out of memory" type
errors. More moncy had to be spent to purchase an
upgraded compiler to be able to even compile this code.
This code will compile and work well with the R&R
Software 386-t0-DOS Janus Professional Compiler.

The style of code written in the Ada classroom
environment is basically syntax oriented. Code written
on a project (even if it is just homework) in an object
oriented fashion is much different. Deciding the best
methodology for .gluing together generic packages
requires the engineering work, and not much guidance
exists in the literature. At least for the near future, good
engineers are required in the code generation process.

The Code

Over 60 pages of code resulted from this effort.
Each package was developed to be stand-alone and
reusable. 1 maintain a three ring binder for the
documentation each divider containing one package with
the requirements, design, code, notes, copies of pages
from text books and other references, test programs and
results. The packages that tie the code together are the
templates which use the package Astro_States as the
primary package. Once properly instantiated, the
engineer can write application code similar to a MathCad
or MatLab program utilizing functions specific to
astrodynamics. The advantage is the capability to
compile this code so that it can run real time or faster.

This code is centered around a package called
Astro_States. This package defines three objects, which

““contain the state information (position and velocity) in

three different frames of reference: Classical Keplerian
Elements, Earth Centered Inertial (fixed frame) and
Flight Path Coordinates (rotating frame). Figure 2 is two
code fragments from Astro_States including the private

_ part describing the states. _
These private types have member functions to

initialize the states, convert between the states and also
get data from the states. Two other functions are time of
flight between two states, and a ballistic propagation
function given a time. The package also develops the
derivatives of the states for use in an integrator.

11th Annual National Conference on Ada Technology 1993

. SR

Package ASTRO_STATES Is

typs indexis (X,Y, 2, ~ ECl Axes
Roll, Pitch , Yaw, = Body Axes
Vel, Azm,FPA, Long, Lat, Rad , Mass , - FPC
a,e,i,RAAN, Arg Por, Tr_ Anom, -CKE
1,'2,'%,'4 '8 "¢, T') ; - Generlc

private

subtype BCI_Index is Index range X .. 2 ; :
subtype CKE_Index is Index range a.. Tr_Anom ;
subtype FPC_index is Index range Vel .. Mass ;
subtype Body_index is Index range Roll .. Yaw ;

subtype Position_Type is Vector (BCI_index) ;
subtype Velocity_Type is Vector (BCI_Index) ;
subtype CKE Data_Type is Vector (CKE_index) ;
subtype FPC_Data_Typ. is Vector (FPC_index) ;
subtype Aftitude_Type is Vector (Body_Index) ;
subtype Rate_Type is Vector (Body_Index);

type BCl_3D is record
Position : Position_Type ;
Velocity : Velocity_Type ;
Time :Real;

end record ;

type CKE_3D is record
CKE_Data_Set : CKE_Data_Type ;
Time : Real ;

end record ;

type FPC_3D is record
FPC_Data_Set: FPC_Data_Type ;
GHA :Real ; .
GMT :Real;

end record ;

end states;
end ASTRO_STATES ;

generic parameter to the integrator which in turn is used
as a generic function back in the Astro_States.propagate
package to permit integration of the state over time. The
object being integrated is private, allowing the
integrators to be used on many different types.
Additiona! generic parameters include specific operations
on the type being integrated so that the functions can
implement the processing. Additional features include
an optional adaptable step size on the RK4 integrator to
minimize processing errors. Figure 3 is an example of
one fragment of the package specification.

|;aekage Integrators is

Integration_Error : exception ;

generic

type Variables is private ;

type Real is digits © ; - -

with function Deriv (X in Variables;

Y :in Rezl) return Variables is © ;

with function “+* (X, Y : in Variables) retum Variables is
<,

with function *** (X : in Real ; Y : in Variables) retum
Variables is <>;

package Euler is
procedure Integrate_Euler

(Y_Start :in Variables;
X Start :in Real;
X_End :inoutReal;
Step_Size : in out Real;
Y_End out Variables);

end Euler;

Figure 2, Code Fragment from Astro_Staies

The integrator package currently contains three
integrators, an Euler, RK4, and a 6th order
predictor/corrector integrator, but will in the future
contain others. The derivative function is passea as a

Figure 3, Code Fragment from Integrators

Functions that need to be passed as generic
parameters to the Astro_States.Derivative package are
Lift, Drag, Tiuust, and Gravity. The Lift, Drag, and
Thrust functions have typically been coded in one
package called Vehicle.

The Gravity package provides for many gravity
models including a J2 and J4 model. These functions,
given a position vector, provide an acceleration vector
describing the magnitude and direction: of "down". Since
the earth is not perfectly spherical nor is the density

11th Annual National Conference on Ada Technology 1993

. T o e mheena . ‘
.]) L / // , =/ B - ~ L
,_ ~. i >y AT
: ; o ; A 7 - T
. Y , *~ . N .
! RN PR [P ;

26

27

_only processing.

uniform, "down" changes from here to there. This
results in changes in the orbits of satellites. This package
allows the user to determine the accuracy, or order, of the
model. The higher the order of the model, the more
processing time is required. In addition to the existing
models work is currently underway to develop a tesseral
and sectorial model (coefficients are available to about a
50 by 50 model) as a task to run in parallel with the
simulation. The high frequency integrator would use a
J2 or J4 calculation plus a delta being the difference
between the JX model and the 50x50 mode! until the task
completes. at which time the delta is updated.

A linear function package was written as a
genenc with unconstrained array sizes and enumeration
types for the index. This permits access to
State_Data.Position(X) in the ECI frame for readability.

. This makes the linear function package somewhat more

complex since the matrices und vectors don't have simple
ranges with which to work. Also the package
Generic_Linear_Functions has a nested arrangement so
that the inner package is:
Generic_Linear_Functions.Generic_Vector_Functions.

Generic_Matrix_Functions. [Initially it was coded such
that a matrix type had to exist in order to use just vector
functions. The nesting proved to be an adequate simgle
solution so that matrices did not havs to exist for vector
Other evolution changes were the
philosophy to treat the linear functions similar to
transcendental functions as intrinsic, or force the user to
a very strict object oriented philosophy, requiring the
passing of many functions as parameters to each package.
The feature of overloading tended to influence me to
toward an intrinsic implementation, but maintenance and
flexibility won out for an object based package. The
functions are passed as parameters in generics rather
than the package being "withed” in the implementation.
Plans exist to continue the nested chain and add

- Generic_Quaternion_Functions within ..__. . the

.Generic_Matrix_Functions package. A code fragment is
shown in figure 4.

- funeﬂon""(Mat 1:in Matrix ; Scalar In Real)return

with LINEAR_FUNCTIONS_EXCEPTIONS;
padugo Generic_Linear_Funcions is

B Pr:ﬂuge Vectors provides functlons for the object

*Vactor”

generic

type Indexis (<) ;
type Real is digits © ;
fype Vector Is array (Index range ©) of Real ;

11th Annual National Conference on Ada Technology 1993

with function sqrt (X : In Real) return Raal is ©;
with function arccos (X : In Real) return Real is ©;

package GENERIC_VECTOR_FUNCTIONS is

function “+* (Vs : in Vector) retumn Vector;

function *-" (Vec _ d In Vector) retum Vector;

function "+" (Vez_1, Vec_2: in Vector) retum Vestor ;

function *-" (Vec_1, Vec_2 : in Vector) return Vector ;

function ™" (Scalar : In Real ; Vec_1 : in Vector) return
Vector ;

function ™" (Vec_1: in Vector ; Scalar : in Real) retum
Vector ;

function "/ (Vec_1: in Vector ; Scalar : in Real) retumn
Vector ;

function ™ (Vec_1, Vec_2: in Vector) retum Real ;

function Dot (Vec_1, Vec_2:in Vector) retumn Real
renames ™ ;

function "** (Vec 1, Vec 2:in Vector) return Vec?nr

function Cross {Vec_ 1 Vec. 2: in Vector) retum Vector
renames "=,

function Angle (Vec_1, Vec_2: in Vector) return Real ;

function Norm (Vec_1 : in Vector) return Real ;

tunction Unit {Vec_1: in Vector) return Vector ;

procedura Put (Vec_1: in Vector) ;

generic

type Matrix is array (Index range <>, Index range <>) of
Real;

package GENERIC_MATRIX_FUNCTIONS is

function "+" (Mat_1 : in Matrix) return Matrix;
function "-* (Mat_1 : in Matrix) return #4trix;

function "+" (Mat_1, Mat_2 : in Matrix) return Matrix ;
function "-" (Mat_1 , Mat_2 : in Matrix) return Matrix ;
function ™ (Scalar : in Real ; Mat_1: in Matrix) return

Matrix ;

Matrix ;
funrton 'I" (FR4t_1 : in Matrix ; Scalar : in Real) retum
Matrix ;
function ™" (Mat_1 : in Matrix ;
Vec_1 : in Vector) retum Vector ;
function ™ (Ma’_1 : in Matrix ;
Mat_2 : in Matrix) return Matrix ;
function Invert (Mat_1 : in Matrix) return Matrix ;
function Transpose (Mat_1 : in Matrix) return Matrix ;
procedure Put (Mat_1 : in Matrix) ;

Figure 4, Code fragment from
Generic_Linear_Functions Specification

}

A

RN

PR

P

e - fa .
. . N . . N

o .
S . P ‘
[S Sy "y

To work one of the boundary condition problems
for reentry, a quartic root function was required. This
resulted in a package called Real Roots that has closed
form solutions to the Quadratic, Cubic and Quartic
functions.

The vehicle model required atmosphe: . data to
calculate drag, lift and thrust. A package Aumosphere
was developed to provide functions for density, altitude,
radius of the earth at given latitudes, mach number and
other atmospheric data.

The atmosphere model required table fookup, so
a packzge Tables was developed to do linear
interpolation on 1D and 2D tables. Possible future
additions to this would be more exotic interpolation
techniques and a binary search, verses the linear search
currently implemented. _

The last two miscellaneous packages are
Astro_Constants and Transformations.

Templates were developed for the final
applications, see figure 1. The templates instantiate the
generics in the proper order, allowing the user code to be
written with ‘all of the available objects and ra.mber
functions. One template instantiates the high fid=lity
models and the other instantiates real time models. This
permits the final application to be up and running
quickly. Final adjustments can then be made in the
model selection for the application.

Towplshe Gonrk_nolom_l‘n‘ﬁnn]
(bixntiziex each Astre_Stxiex
::tknbp t Gemeric_Linezx_Functions
proper erier
and pasyos the Genmsric_Linear Functisms.
invientisied fanctiens | | Genaxic_Vecier_ Furnciisas
& pemoric parameiery | o ngric Timgar Functiony
b:;mnhi; Cemeric_Vecihr_Functiony.
pomacc packagey Coneric_Mairix Function
Axtre_Comstaxix
Asire_. twiex Staies
. N
Almexpkere |
%)
'Eixy
Im?.m
. fizgrsion]
User Application Code wsm

Figure S, Templare

This code is available to students and educstors
by sending a 3.5 or 5.25 floppy and a SASE to:

Roger Kovacs

2003 S. Evanston Ct.

Aurora, CO 80014
The code is provided for non-profit use, and feedback is
greatly encouraged.

Lessons Learned

Determining the object is the most difficult part.
Defining the object once identified is simple. This must
be an iterative process and should not be constrained by
automated tools and processes. A simple change to the
main object may and in many cases cause one to discard
most all of the previous work. This freedom must be
preserved during the first part of a life cycle.

The structure of the program dictates the
interfaces and member functions required. This structure
has to conform to the limitations of the Ada syntax and
compiler bugs. Ada 9X will provide more freedom. This
too is an iterative and a learning process. Decisions
made include package structure, (object and functional).

Do-all functions may be reusable but in the end
may never be reused. Careful attention must be paid to
all aspects of reuse. Engineering is an art and science
which develops a solution to a problem. The engineer,
given guidelires, must hdve the freedom to select the best
solution. Templates provide the user a better starting
point for the reuse of the existing code then just
comments. It may not be too apnarent to a future how to
glue together the appropriate packages. Modifications
after it is functional are much easier than figuring out
how to start from scratch. Reuse is the key, a template is
good reuse when the general application doesn't change
much. ‘

Embedded test functions or separate test
packages provide a. simple way to revalidate changes.
Most compilers have appropriate switches to eliminate
code that does not link in. This then causes no additional
overhead to the end user and can provide vital
information on the precision and correctness of the
package as executed on various platforms.

nclusion

Ada is an excellent language for the
development of reusable packages. The extra overhead
required to use Ada over other languages was not
noticeable. I was able to keep up or ahead of my
colleagues in all of my classes using more of the
traditional languages doing the exact same assignments.

11th Annual National Conference on Ada Technology 1993

i\

28

The maturity of the compilers is improving, but many of
the other languages have an edge. The rejection of Ada
as the language of choice for a particular project is more
of an attitude and training issue. Qualiiy of Ada code is
an experience issue and coding techniques will improve
over time. Many of the individuals coding today in
industry are engineers of disciplines other than software
or computer science. [t may be simple to train them to
learn Ada syntax, but the larger issue of writing reusable,
robust, easily maintained, testable, efficient code will be
difficult. This takes Ada (and software engineering life
cycle) experience which takes time. 1 hope to develop
over time a balanced blend of two engineering
disciplines, Aerospace and Software, and to be able to
apply software discipline to aerospace engineering.

It was difficult to find literature in libraries to
aid the development of good generic packages, when and
where to use private and limited private types and
examples or case studies somewhat larger than a few
lines of code. Once a standard methodology is developed
for aiding in these decisions, Ada will stand out alone in
‘the reusable software market.

This assignment provided me with lessons
learned that is documented in this case study.
Engineering is a decision making process and many of
these decisions were difficult. More experience will aid
in the maturity of the code generated. I recognize that
this experience only touches a very small part of a
software life cycle. It will take more time to grow and
learn through experience the many techniques and
methods that work and don't work. I will have to see
which modules are really reused, and which ones are
continually rewritten, and for what reasons.

Future

I =nvision that in the future, software can be
developed with a graphics interface similar to current
design tools which will use these and other reusable
components, and allow the user to graphically connect
the generic parameters. When the user has assembled
the reusable components, target code will be generated,
and Ada will be produced for documentation or transfer
to a different target computer. Software engineers will
only be required for developing new reusable components
(as well as new and better tools). Just as robotics
replaced many blue collar workers, I see computers
replacing many white collar workers. | desire to be part
of the developing future, not standing back watching it

go by.
Challenge

Do it better, and let me know how! [will
provide copies of the code into the public domain for

" non-profit educational use. After graduation,

configuration control and maintenance will be provided

for some time. (Unfortunately, it would be an

overwhelming task to provide notices of error reports to

all the users, so just write often.) The evolution of this -
code should provide a much better case study than the

initial release. Let's sce what we can all do in a year.

[1}] Shlaer, § and Mellor, S., OBJECT LIFECYCLES
Modeling the World in States, Yourdon Press, 1992

[2] Generic_Elementary_Functions as proposed by the
SIGAda NumWG in 1990.

Biography:

Roger Kovacs is a software test engineer at Martin Marietta
Aerospace in Denver, Colorado and is currently completing
a ME, Space Operations at the University of Colorado at
Colorado Springs. He has a BS in Electrical Engineering
Technology from Metropolitan State College of Denver.
The only formal undergraduate software education is a
single class in PDP-11 assembly language. Self taught
languages include Pascal, C, C++, and various assembly
languages. Ada was pursued with vigor in a graduate level
class at the University of Denver.

KN s s

29 1ith Annual National Conference on Ada Technology 1993

A . ’ \

j
/ 4 .
= o o L - /

- / . B :
. I - - .

Architectural Decomposition of Software Applications

Kimberiy Reese and Gary Cort
Los Alamos National Laboratory
Los Alamos,‘ New Mexico

~ Abstract
Modern software management and quality
assurance necessitates development of
unique solutions to increasing comp!exities.
One such solution is the concept of repre-
senting software applications in hierarchal

structures such as file list. The benefits of
the file list are licted in Jetail.

Introduction

Los Alamos National Laboratory Technical
Software Management Group employs in-
novative approaches to develop, maintain,
and operate software. The Technical Soft-
ware Management Group’s mission is to
efficiently manage ali Los Alamos National
Laboratory Yucca Mountam Pro;ect soft-
ware applications.

With the increasing complexity of software
applications, software components are be-
coming significantly more difficult to
manage. Modern Technical Software
Management and software quality assur-
ance approaches require detailed informa-
tion regarding the organization and inter-
relationships of the components of com-
plex software applications. Such informa-
tion is invaluable for defining and catalog-

ing software baselines; peiforming audits

on software development projects; creat-
ing packets of information for review; au-
tomating the submission, release, and
certification of software products; gather-
ing metrics throughout the software
project; and Pssessing tha scope and im-
pact of proposed changes to an application.

In order to accomplish these goals, a
mechanism or structure representing the
architecture of a complex software appli-
cation must be devised and the develop-
ment of software tools for processing the
architectural information must be
implemented. This structure is known to
the Technical Software Management
Group as a file list. When the file listis de-
fined and the tools required to process it
are in place, the manageability of software

_ applicaiions will increase and the founda-

tion for the development of other software
configuration management and software
quality assurance tools will be established.

Software Applications

A software application is a collection of
files associated with either a reuse com-
ponent or functionally related computer

11th Annual National Conference on Ada Technology 1993

30

programs. These files are divided into pri-
marycomponentsandsupport
components. The primary components as-
soclated with a particular software applica-
tion are composed of source code mod-

 ules and documentation directly related to
the application. For example, primary

components might consist of functionally
related computer programs, data sets re-
quired for input to obtain the data sets

required for output, and possibly documen-

tation on how to use the program(s). Sup-
port components of a software application
are a group of modules incorporated into a
testing product. The testing product con-
stitutes source code modules and docu-
mentation that are indirectly related to the
application. Examples of indirectly related
modules are te<ting files, each related to a
different test ot the source code modules,
ancd documentation, explaining what is be-
ing tested. Source code modules are ei-
ther computer programs orreuse
components. The ditference between
computaer programs and reuse compo-
nents is that functionally related computer

programs can perform different tasks -

alone whereas reuse components are pro-
cedures or functions that cannot stand
alone and must be incorporated into a pro-
gram to perform a varisty of tasks. Com-
puter programs and reuse components are
never combined in the same software
application. The software application is
- comprised of modules directly or indirectly
related to the computer programs or reuse
components. Documentation shall incor-
porate significant events of the develop-
ment of a software application and be doc-
umented in text files. These text files, or
modules, could be user guides, reports,
installation scripts, data set descriptions,
modules and methods summaries, soft-

ware design documents, software require-
ments specifications or version dexnpt:on
documents.

With such a wide variety of modules for a
single software application, to manipulate,
manage, and keep track of the software
application and its modules mentally or
physically could cause many errors. Op-
erating on the software application as a
single entity is a necessary requirement. It
is obvious that an organizational method-
ology is needed to maneuver software
applications. The idea of the file list was
designed to fLIhII this by Gary Cort and
Steve Donahue in addition to aid the Tech-
nical Softwa}e Management Group in
managing software apphcatnons

The purpose of a file list is to identity relat-
edcomponents within a software
spplication. filo list is a group of text
filas. Each group is again a file list, which
identifies collections of functionally related
modules within a software application.
The file list allows modules to be logically
associated and controlled as a unit. The
file list provides an organized scheme for
all software applications. With an appro-
priate organization of the software applica-
tion, a hierarchical structure is generated.

An entire software application is represent-
ed by a file list(Figure 1). A file list is an
abstract notion which decomposes a soft-
ware application into collections of related
files. Each collection of related files is itself
a file list. An individual file list(Figure 2) is

~ -

--support components.

a file containing comments and names of
interdepandent files. Any one of these in-
terdependent file names may also be a
name of a file list, reprasenting a cluster of
names of interdependent files.

_ Each text file, or file list, within the file list

hierarchical structure specifies a compo-

- nent of the software application. For ex-

ample, suppose there exists a software
application, called "Program." The "Pro-

gram” represents the modules associated

with and including the computer programs;
input and process. To convert the soft-
ware application into a file list, Program
now becomes PROGRAM.AFL. An Appli-
cation File List (AFL) provides the highest

level view of a-software application

hierarchy. It provides references to mod-
ules that are global to the entire application.
The PROGRAM.AFL is a file consisting of
the names of the programs; INPUT.PFL
and PROCESS.PFL, the testing product;
PROGRAM.TFL, software requirements
specification; PROGRAM.SRS, and soft-
waredesigndocumentation;
PROGRAM.SDD. The architecture of an
AFL automatically specifies the dependen-
cy relationships between the pnmary and

The primary components represent the
Program File Lists (PFLs) or the Reuse
File Lists (RFLs). In figure 1, the Prog-am
file list's primary components are the com-
puterprograms INPUT.PFL and
PROCESS.PFL. Becausethe
PROGRAM.AFL contains computer pro-
grams, it cannot contain reuse file
lists(RFLs). PFLs and RFLs are separate
software applications. PFLs specify the
components of the primary software prod-
ucts provided to the users of an application.

There is a one-to-one correspondence be-

tween PFLs and user programs. Notice in
figure 1 that INPUT.PFL and PROCESS.-
PFL have similar names listed within;
INPUT.ADA and PROCESS.ADA. These

- are the names of the user programs. Oth-

er program names listed within, i.e.
I_READ.ADA, are support programs.
RFLs specify the components of the pri-
mary reuse products provided to the users
of an application. There is a one-to-one
correspondence between RFLs and user
packages.

Tha support components in the hierarchi-
cal structure are the primary Test File
Lists(TFLs). The TFLs are major compo-
nents of the overall testing effort and rep-
resent the testing product. The primary
Test File List shall reference zero or more
Test Suite Test File Lists(TFLs) and Sup-
port File Lists(SFLs). The primary TFL will
also reference the verification and valida-
tion report; PROGRAM.VVR, verification

-and validation plans and procedures;

PROGRAM.VVP, and test results;
PROGRAM.TR. Test Suite Test File Lists
and Support File Lists are organized hier-
archically beneath the primary TFL to re-
flect the internal structure of the testing
effort. Test Suite TFLs should be listed in
the primary TFL. The two test suite TFLs
listed in figure 1 are INPUT_SUITE.TFL
and PROCESS_SUITE.TFL. Suite is an-
other word for a collection of related files.
itemized within are computer programs
and subprograms that are used for testing.
These are only two testing aspects of the
software application. There can be many
Testing Suite TFLs for one program in or-
der to verify that the program works cor-
rectly and will not crash. There is no limit
to the number of Test Suite Test File Lists

€€

11 oj4

=
=
>
3
3
3.
2
o Viva 1S3L IV
o VIVO 3NV uoddng
3 1451505 T 1531
o —
o]
=] FENG
Ingd - N PSR ..\n.‘.-.~_,..a«.u‘\
~ . 180sTiT1s3aL | K ———
il IS 9ji4 1se} 901 1HOS 11s3L | W 901 iNud d 1s3L
o ayns 1sa) — 901 avad |l is3at B 907 NIVW 4 1S3l
o v § WOD 1HOSiisaL | B .0 iNid d 1S3
w . _ : | WOO Qv3yllsatL NOD NIV d 1S3t
& - “T4I3LNS INdNI THL34UNS SS3008d -
m q T S T
S H 141 3UNS7SS3I00Hd
3 =
A B HL 3unsTinan | Lo N: o4
) — dl WVYHOOHd BW
< HAA 'WWHO0Hd 1591 Meuitd
2 Isi1o|4 Vav INHdd vav LHOST] nvHO0ud
w Goiq4 ™ vav NIVIW d vav av3d | L WYHOOUd
weibold Vav $5300Hd VoY 1AV | A -
14d°SS3004d T4d"LNdNI
1 . e e
$53004d
Isn o4 1NdNI
- WVHO0Ud
uoyiedjiddy WVHOOUd
WVUDOHd
. HY AVED0Hd
L 2anbig
lll,lllllllllllllll.

N N X T
N . : . . - :
| :) T ’
. R B R -

or Support File Lists that may be specified
for an application. A TFL at any level may

‘reference Support File Lists. The one Sup-

port File List shown is TEST_| SORT.SFL.
This contains information needed in order
to run testing in INPUT_SUITE.TFL. Sup-
port File Lists (SFLs) are summarized
auxiliary programs that provide additional
resources (test data, special environ-
ments, etc.) for the testing effort. There is a
one-to-one correspondence of SFLs to
support programs. All file lists have a spe-
cific format that also aids configuration
management’s efforts to regulate software.

File list structures are made up of entry
lines of information, either comments or
specifications (Figure 2). The file list struc-
ture has a unique name and a type. lllus-

trated in figure 2, the unique name is PRO-

GRAM and type is AFL. A comment, de-
limited by a hyphen in the left margin,
contains explanatory information. This in-
formation could be the name of the soft-

‘ware application, the description of the

software application, or anything related to
the software application. The comment is
not processed by any file list operations. It
is only needed for user communication. A
specification characterizes a single mod-
ule in terms of the component’s name,
type, and status. The name is the primary
identification attribute of a specification. It
corresponds exactly to the file name of the
associated application component on the
host file system. The type is the extension
of the associated application component.
It corresponds to the type of file it is. In

Figure 2
File List
N\ PROGRAM.AFL
- This is an example of a file list Comment
* 'PROGRAM SRS
* PROGRAM SDD’
INPUT PFL
Specification ———] PROCESS

Status

Name

Type

This program application file listis an example of how a file listis decomposed.

figure 2 examples of names are PRO-
GRAM, INPUT and PROCESS and types
are SRS, SDD, and PFL. The status spec-
ifies the change processing status attribute
of an application component through the
presence (or absence) of a standard prefix.
This attribute may assume one of three
possible values: NEW, MODIFIED, or
OLD. The status of a component is MOD-
IFIED (prefix = *), if a currently approved
version is undergoing change. NEW sta-
tus (prefix = **) denotes a module for which
no previous approved version exists. Sta-
ble existing modules are assigned the OLD
status (no prefix).

Processing_a File List

Now that the design has been laid, the
tools to process the file list must be
implemented. These tools were incorpo-
rated into a software package. The tools
included: VISIT_ALL, VISIT_MODIFIED,
- VISIT_NEW, VISIT_OLD, PARENT_OF,
ANCESTRY_OF,NAME_OF,
STATUS_OF, and TYPE_OF. These tools
allowed Technical Software Management
‘Group to efficiently control software appli-
cations with minimum overhead.

Each tool has a different function. The
VISIT_ALL gave the ability to iterate
through an entire software application(file
list). For instance, VISIT_ALL would start
at the top level, PROGRAM.AFL, and re-
turn one entry at atime, PROGRAM.SRS,
PROGRAM.SDD, and PROGRAM.TFL
(from figure 1). When PROGRAM.TFL is
reached , the program then branches off to
iterate through PROGRAM.TFL, returning
PROGRAM.VVP, PROGRAM.VVR and

then INPUT_SUITE.TFL. When it reaches
INPUT_SUITE.TFL, it repeats the procass
again until the entire fila list is iterated. The
VISIT_MODIFIED procedure gives the
ability to iterate through only the file names
that have been modified. which means
that it returns only modified entries. This is

the same for VISIT_NEW, and VISIT_OLD,

whichreturn new and old entries
respectively. The PARENT_OF tunction
returns the name of the file that the file re-
sides in. For example, the parent of
PROGRAM.VVP,infigure1,is
POGRAM.TFL, andthe parent of
P_PRINT.ADA is PROCESS.PFL. The
ANCESTRY_OF function returns the en-
tire list of ancestors not including the file
that the ancestry was to be found of. For

.instance, the ancestry of MAKE_DATA

would be PROGRAM.AFL/PROGRAM.TFL/
INPUT_SUITE.TFL/TEST_|_SORT.SFL.
The functions NAME_OF, STATUS_OF,
and TYPE_OF, would return the name sta-
tus and type respectively. Looking at fig-
ure 2, the name of PROCESS.PFL would
be PROCESS, the status would be NEW,

- and the type would be PFL.

The autométion of this information elimi-
nates routine, lengthy, and inaccurate

~—operations. These tools supply the data

necessary for the development of other
software configuration management and

software quality assurance tools.

The Benefits of a File List

The file list provides a precise and clear
understanding of the crganization of a soft-
ware application. The tools used to pro-
cess a file list can be employed to obtain
useful information. For example, a printout
of a file list can easily supply the directory

! . . -t ‘!\\ '
R : S . : : . \ s N
T S : . SR A ‘ , :
E N BN N =N AR N BN N N S BN BEE PER BN BN M B Ee

information to store a software bassline, or
a collection of software components.
When a very large software project is to be
developed, a file list complements the re-
quirements and design document of the
project and clarifies exactly what is to be
accomplished. ‘A file list can be held as a
check list for the physical and functional
requirements of software. For example, if
the developer tums in a baseline, the con-
figuration manager can cross check each
software component handed in with the file
list. This method assists in tracking com-
plete and needed to be completed software
and documentation. The file list allows

assembling and printing of the review

packets of information, which could con-
tain over a 1,000 different files, to be
automated. This process can be easily au-
tomated with the VISIT_ALL procedure,
which then would requite only the file list
name to locate, validate and transfer all of
the files associated with the baseline;
therefore, eliminating the tedious effort to

type each fiie name, and quickly creating a

more accurate packet of information.

A file list structure is also helpful for soft-
ware updates. It would not be beneficial to
release an entire software application with
over a 1,000 software components to a de-
veloper for updating, when only a few files
need to be modified. A file list allows for
files to be marked effectively, using the
status; NEW, MODIFIED, and OLD. The
tools can be used to ensure that only the
necessary files are sent to the developer.
Since the developer only has access to the
software components related to the up-
date, the configuration manger is still in
contro! of the software application. Main-
taining control of the software application,
is important for greater manageability.

File list structures also aid in gathering

metrics throughout the software project life
cycle. Metrics aid software configuration
management in defining good, reliable
software. The process of the software is
also important. For instance, the number
of lines of code in a software component
can be used to measure the efficiency of
the process. The tedious task, to manually
count each line of code would take many
hours and include many human errors.
This task can be automated by the use of
file list. By automating the process, results
will be quick, efficient, and accurate.

Conclusion

‘The complexity and magnitude of today’s

software projects necessitates an en-
hanced, organized, and logical structure,
file list. File lists are easy to maintain and
manage. Using file lists enhances the pro-
cesses of classifying and characterizing
software baselines, verifying the require-
ments of software development projects,
producing review packets, automating the
modification of software products, obtain-
ing measurements, and determining the
range of impact of proposed changes. The
file list insures a consistent hierarchical or-
ganization for the decomposition of a com-
plex software application. The automation
of these tools will assure reliable, precise,
and rapid results that will relieve the poor
soul of the burden to be a slave to the key
board. The Technical Software Manage-
ment Group at LANL has put the file list in
place and created some of the tools
mentioned. They now work on other tools
that may assist them in reducing tedious

11th Annueal Natiamal Canfavanan aa Ade Machaatlaem. 10072

37

5 ST B D R R R e R e N

»land boring operations and improving
efficiency.

References

1. Cort, Gary and R. O. Nelson. "The Los
- Alamos Software Development
Tools." Proceedings_of the Digital
Eaquipment Computer Users Society
(1985): 391-94.

2. Cort, Gary and R. O. Nelson. " The Los
Alamos Tool-Oriented Software De-
velopment System." Proceedings
of the Digital Equipment Computer
Users Society (1985): 395-99.

3. Donahue, Steve and Gary Cort. "The
LANSCE Software Management
Environment." Proceedings of the
Digital Equipment Computer Users
Society (1988): 127-39.

4, Software Configuration Management.
P-QAPP Alam

tional Laboratory Quality Assurance
rth M nin 10j

5. Software Confguratnon Management.

File List Standards.

Acknowledgments

This work was performed under the aus-
pices of the U.S. Department of Energy,
Los Alamos National Laboratory and with
the aid of Gary Cort and Donn Hines.

11th Annual National Conference on Ada Technology 1993

- Kimberly E. Reese is presently a student at

L —"

About the Author:

Kimberly E. Reese

Stockton State College
Pomona, NJ 08240
stk1054@vax003.stockton.edu

Stockton State College, working on a B.S.
in both mathematics and computer
science. Her primary objective is to obtain
a Ph.D. and do research and development
in the computer science field. She has
been successful working as a cooperative
educatior. student for the Federal Aviation
Administration. Her work for the Operation
Research and Analysis Branch entailed
studies of aviation system safety and
efficiency. More recently she worked as
an intern for Los Alamos National Labora-
tory, Earth and Environmental Sciences
Division. As a software engineer, she de-
veloped a reuse package in ADA to assist

- inthe management of software. Presently, l

she works with the Federal Aviation Ad-
ministration, in Human Factors Division,
developing an user interface. ‘ ‘

LR

\? N

[\ . . . ~ 1 . ’ N
“« Lo) e .

_\
A

-

C o T S R Loy 3

Teaching the Second Course in Computer Science in 2 Reuse-Based Setting:
A Sequence of Laboratory Assignments in Ada®

Jeff Gray
jgg@cs.wvu.wvnet.edu

Department of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506

'Comcspondence: Murali Sitaraman - murali@cs.wvu.wvnet.edu, (304)-293-3607

* This research is funded in part by DARPA Grant # DAAL03-92.G-0412 awarded to
West Virginia University and Muskingum College, New Concord, Ohio.

Abstract

We are currently exploring a new approach
for introducing key software engineering and
‘computer science principles in the second course
of our curriculum. Our approach introduces

. software reuse as a context for providing a

motivation toward learning the importance of
principles such as abstraction, specification and
design. An essential element for the success of
the reuse-based approach is an appropriate series
of lab assignments, First, we present the students
with components designed and implemented by

" the lab instructor. Based only on the

s

specifications, students | to assemble these
components and solve interesting problems.
Later, students reuse these components to build
layered implementations’ of other components.
Only toward the end of thé course are they taught
how to write their own implementations from
scratch, such as using pointers, ‘This paser
describes three lab assignments which illustrate
our approach.

L Introducticn
Why teach reuse in an introductory course?

Most current undergraduate computer
science curricula suffer from two fundamental
problems, which often lead to several others, One
problem is the absence of & context, and hence
motivation, for learning fundamental principles
of computer science (e.2. abstraction) in the
second course. The other problem is late
exposure to principles of software engineering,
such as those found in a senior level course,
resulting in relatively inexperienced graduates in
applying these principles.

11th Annual National Conference on Ada Tecﬁnology 1993

We believe these problems can be
ameliorated by providing software reuse as a
context in which to teach the fundamental
principles of computer science. The reuse-based
approach also motivates key software enginecring
principles that are often omitted when the course
is taught.outside of this context. The principles
instilled by the lab assignments discussed in this
paper include:

-- The ability to understand abstract and formal
specifications:

-- Specification-based component reuse;

-- Separation of the specification of a
component from its implementation;

-- Construction of new components by layering
them on top of existing components;

- Multiple implementations (with different
efficiency characteristics) for a given
specification.

Introduction to these principles early in
their undergraduate careers will give students
ample time to gain confidence in their abilities
by applying the principles throughout their
remaining courses. This paper describes an
approach toward the construction of Iaboratory
assignments which attempt to meet the above
goals. During the past year, such assignments
have been used in a section of the second
semester freshmen level computer science course
at the West Virginia University,

\ "/

38

- Recent literature on software reuse
ho contains several different definitions or
classifications of the term [6). The definition of
reuse used in this paper is component-based (8,
11]. We view a reusable component as having
two distinct elements: a formal specification and
a certifiable implementation of that specification,
possibly in the form of object code. All
references to reuse discussed in this paper are
based only on the specification and performance
characteristics (e.g. performance efficiency) of the
implementation. We concentrate on components
b which are designed for reuse and are not concemed
IR with definitions of the term that deal with code
T scavenging or other methods where the
N utilization of already existing software occurs by
accident or serendipity. '

.‘vi 2 PR [!

The paper is contained in five sections.
Sections two through four describe aspects of
different laboratory assignments that have been
used to introduce students to software engineering
and reuse principles. Each of these sections
- contains the goals, descriptions, and possible
o variations on the theme of a particular lab, The
I assignments chosen to be discussed in these

: sections are only a subset of the tota! collection

L of labs that we have developed but are those

~ 4 which best exemplify our overall goals. A final

section summarizes the paper and offers
e suggestions for possible areas of future work.

E 2.Student as client of a reusable
coN - component
Goals

~ To teach the following principles:

-- The ability to understand formal and abstract
expr~ssions of a specification;

- Specification-based component reuse;

D - The need for separation of the specification of
i . acomponent from its implementation;

/ - Acquaint the students with the notation of a
: specification language; '

/’f‘ﬂ -- Construction of secondary operations.

Descripti
‘ ‘The purpose of this laboratory assignmeht
is to solve a backtracking problem iteratively

using a stack package provided by the instructor.
Several different backtracking problems have

been introduced to the students. Examples of
problems we have used in the past include:

-- The Eight Quecns problem, whereby the
students must find all possible combinations
of placing eight quecns on a chess board so
that no queen can be attacked by another;

-- Helping a mouse find a piece of cheese by
moving through a maze which contains dead-
ends;

-- Assisting a squirrel in climbing to the top of
a tree, filled with many empty branchces, to
find an acorn.

All of the above problems share a common trait

in that a decision must be made to explore down

one of several paths, Also, an ability must be "
provided so that one can backtrack to previous

spots and choose alternative paths when dead-ends

are encountered.

The students are asked to solve these
problems iteratively using a stack. The
specification of an Ada package that provides a
stack component is shown in Figure 1. The
students are given a copy of this specification and
told how to access the object code version of the
body to allow for proper linking. They must
construct a client program which utilizes the
stack package to solve the backtracking problem.,
The client program is then linked with the stack
package to obtain an executable,

When the students are given the stack -
component, they are asked to view the
specification as a coniract between themselves
and the implementer of the package (i.e. the lab
instructor). This reinforces the notion that the

. developer and user of a component are often

different people. They are assured that the stack
operations will work correctly provided they
follow the specification. They must surmise on
their own, by reading the specification, the
syniax and meaning of each operation. Thus, the
students get an early example of the importance
of providing specifications which are
unambiguous. To add semantic information to
Adz package specifications, we use a close dialect
of the RESOLVE specification language [4, 10,

39 11th Annual National Conference on Ada Technology 1993

Y

S

/

. i ' N .

'

11). RESOLVE specifications are formal, but yet
succinct and understandable by freshmen who
have been briefly exposed to topics covered in

In Figure 1, the type Stack is modeled as a
methematical string, Manipulations on a variable
of type Stack are described using functions
borrowed from mathematical string theory (e.g.
the concatenation operator = “o", found in the
Push and Pop operations). Operations are
specified using a requires clause (pre-cordition)
anC an ensures clause (post-condition). Some
operations may not have a requires clause. These
clauses are mathematical asscnions and not
executable statements. The requires clause states
what needs to be true before the operation is
called while the ensures clause states what the
operation will do provided the requires clauss is
satisfied at call time. A call to an operation
without satisfying the requires clause is undefined
and can do anything, Each reference to a variable
in the requires clause refers to the value of the
variable at the time the procedure was invoked. In
the ensures clause, however, the value of a
variable at the time of procedure invocation is
accessed by preceding the variable name with a'#'
sign. Reference to a variable without the ‘# sign
refers to its value at the time the operation
retumns to the caller. Also, since most character
sets, including ASCII, do not provided symbols
for the universal quantifiers or lambda (i.e. the
empty string in our specification), we resort to
spelling out the definition of these symbols
rather than giving the symbol itself, Aside from
an explanation of the concatenation operator,

‘which should be familiar to most readers, the

above discussion provides an individual with
enough detail to comprehend the meaning of each
operauon One can simply view the stack
operations as mampulanons ona stnng whereby
calls to the Push operation "consume” an item
and place it at the end of a string (i.e. S=#S o
X); the returned item is assigned an initial value
depending on the type of the item. Calls to the
Pop operation remove an item from the end of
the string (i.e. #S = S 0 X).

The Basic_Stack_Template has been
designed for reuse by following guidelines such
as those in [4]). There are several differences
between specifications designed using these
guidelines and other specifications found in
discussions like [1]. Details of these design
issues are beyond the scope of this paper. An
interested reader is referred to [2, 4, S, 8, 11] for
more detailed descriptions of design issues such
as why standard operations called Initialize,

Finalize, and Swap are provided for every type.
generic
type T is limited private;

with procedure T_Initialize(X : in out T);
-~} ensures T.Init(X)

with procedure T_Finalize(X : In out T);

with procedure T_Swap(X, Y : in out T);
~] ensures (X = #Y) and (Y = #X}

package Basic_Stack_Template is

type Stack is limited private;
--! type Stack is modeled by a string of T...

-- standard operations...

procedure Initialize(S : in out S:«k);
--} ensures S = Lambda S

procedure Finalize(S : in out Stac™);

- procedure Swap(S1, S2 : in out § ~ck);

-] ensures (S1 = #S2) and (S2 = #S1)
-- primary Stack operations...

procedure Push(S : in out Stack;
X:inoutT);
--! ensures (S = #S 0 X) and T.Init(X)

procedure Pop(S : in out Stack;
X:in out T);

--! requires S /= Lambda

~lensures#S=So0X Y

function Is Empty(S Stack)
return Boolean;
--! ensures Is_Empty iff S = Lambda

private

type Representation;
type Stack Is access Representation;

end Basic_Stack_Template;

Specification of a Stack Component

A finel requirement of the assignment is
to construct what are termed secondary operations
for the component. Secondary operations provide
additional functionality in using a particular

11th Annual National Conference on Ada Technology 1993

40

:~t;' ,,»vﬁ‘ - H//

component. These operations are often not
included in the list of primary operations due to
the fact that they can be implemented efficiently
without underlying knowledge of the abstract data
type representation. To illustate the difference,
the implementation of the primary stack
operation called Push must have access to the
underlying representation of a stack in order to
properly add an element. It needs to know
whether the stack is being represented using
pointers, arrays, or layered on top of some other
component. However, a secondary operation
called Copy_Stack, for instance, does not need
access to the representation and can be writien
simply using a loop with proper calls to the
primary operations Pop and Push, in addition to
the possible need of temporary variables.

The assignment directs the student in
assembling two sccondary operations for stacks.
The operations that the student must write are
Reverse_Stack and Print_Stack. These operations
are needed in the assignment to print the actual
solutions to the problem that the client program
discovers. Since the secondary operations require
access to various primary operations, the needed
primary operations must be passed as generic
parameters. An example of how this might be
accomplished is found in Figure 2. All the
standard (i.e. Initialize, Finalize, and Swap) and
primary operations of both the element type T
and the Stack type are passed as generic

parameters.
generic

- Semantic specifications for the following
-- operations are the same as those found in

-- Figure 1. :
type T is limited private;

with procedure T_Init(X : in out T);
with procedure T_Fin(X : in out T);
with procedure T_Swap(X, Y : in out T);
with procedure T_Print(X : in out T);

type Stack is limited private;

with procedure Initialize(S : in out Stack);
with procedure Finalize(S : in out Stack);
with procedure Swap(R, S : in out Stack);
with procedure Push(S: in out Stack;
X: in out T);
with procedure Pop(S: in out Stack;
: X:in out T);
with function Is_Empty(S: in Stack)
return Boolean;

" == Construction of new componenis by

package Secondary_Stack_Ops is

-- secondary operations...

procedure Reverse_Stack(S : in out Stack);
-! ensures § = #SR

procedure Print_Stack(S : in out Stack);
--! ensures (S = #8) and (cutput = S)

end Secondary_Stack_Ops;

Speciﬂéaﬁon of a Component for
Secondary Stack Operations

Variai

As stated above, there arc three variations
to the backtracking problem which we have used
as laboratory assignments. Similar labs that
make use of abstract data types other than a stack
could be devcloped. For example, a lab instructor
might give the students a queue package and ask
them to write a client program that uses the

component. They might be asked to use the

queue to simulate a message passing system
where requests to send and receive messages are
handled and placed on a queue. Alternatively, they
might use the queue to simulate a row of tellers
at a bank where each teller has a queue of
customers with individual requests to be serviced.

layered component
Goals -

This lab instills the following principles,
in addition to those already named in section two:

layering them on top of existing
components;

-- Multiple, plug-compatible,
implementations (with different
efficiency characteristics) for a given
specification.

Descrioi

This section describes an assignment that
is along the same iidea as the last section but
offers somewhat of a change in the
implementation of the stack package. In this
assignment, the students are given the
specification to a list component shown in

11th Annual National Conference on Ada Technology 1993

-

~_ v - N

L

i

,.

~

~

P

~

m— e ;

Figure 3. Implementation details about this
component are hidden but access to the object
code is provided to allow linking. They are then
asked to use this component to actually
implement the operations of the stack package
which they have already seen and used. They
must implement the stack operations solely by
making calls to the operations of Figure 3 and
are not allowed to use any form of pointers or
array constructs, Thus, a stack package is
implemented by layering it on top of another
component. The lab described in tae previous
section is reused in this case by re-linking it with
the new stack implementation, The assignment
should assist the students in beginning to think
about how multiple implementations for the
same specification are constructed (see [9]). Also,
the ease with which this lab can be completed
should reinforce the idea of reuse. Students learn
that it is often advantageous to make use of pre-
existing standard components rather than "re-
inventing the wheel”.

The concept used to represent the list
component in Figure 3 is different from the
typical list concept presented in textbooks like
{1). In particular, the abstract idea of lists is
presented without discussing pointers or access
types. A type called list is modeled as two
strings of some other type T. These two string
are called, appropriately, "left” and "right", This
view can be better understood if one envisions a
conceptual cursor that separates the two strings.
The package provides operations to move this
cursor around the list as well as the ability to
perform insertions and deletions. To illustrate
this notion of a cursor, as it would apply to a
list, examine the following instance of a list
variable called L:

|
34:7263

The value of L.Left would contain the two
elements 3 and 4 while the value of L.Right
would contain the four values 7, 2, 6, and 3. All
insertions and deletions are performed (o the right
of the cursor. The Reset and Advance operations
are used to traverse through the list. Using the
above values of list L, a call to the Reset
operation, followed by a call to Remove would
result in L now resembling the following:

11th Annual National Conference on Ada Technology 1993

As a design principle, functions needed to check
the requires clsuse of all operations are also
included in the specification (i.e. fuaction
At_Right_End). The operation Swap_Right will
not be used in this assignment. It has been
provided for future assignments that may
implement secondary operations since it has been
found useful in constructing efficient

" implementations of a Copy_List operation [11).

The students have often found that this
assignment can be completed within scveral
hours. Almost all of the required stack operations
that they must write can be implemented with
merely one line of code. For example, code to
implement the Push operation would simply
entail making the proper call to a corresponding
list operation (i.e. Insert). Similar reasoning
follows for the other stack operations provided
the students take care to preserve the FIFO
ordering of the stack. A student only needs to
understand the specification of the list component
well enough to discern what calls correspond to
similar notions within the stack operations. This
reinforces the concept of specification-based
component reuse.

generic
type T is limited private;

with procedure T_Initialize(X : in out T);
--! ensures T.Init(X)

with procedure T_Finalize(X : in out T);

with procedure T_Swap(X, Y : in out T);
--! ensures (X = #Y) and (Y = #X)

package Lists is
type List is limited private;

-- type List is modeled by a pair of strings of T,
- named Left and Right

- standart&\ operations
procedure Initialize(L: in out List);
ol (L.Left = Lambda) and
- (L.Right = Lambda)
procedure Finalize(L: in out List);
procedure Swap(L1, L2: in out List);
-} ensures (L1 = #L2) and (1.2 = #L1)

Specification of a List Component

43

-- primary List opcrations

procedure Resci(L: in out List);
--! ensures (L.Left = Lambda) and
-! (L.Right = #L.Left o #L.Right)

procedure Advance(L: in out List);

! requires L.Right /= Lambda

--! ensures

--! (L.Left o L.Right = #1..Left o #L.Right) and
--! (thereExists x: T, s.t., L.Left = #L.Left o x)

function At_Right_End(L: in List)
return Boolean;

--! ensures At_Right_End iff L.Right = Lambda

procedure Inscrt(L: in out List;
X:in out T);
--! ensures (L.Lefi = #L.Left) and
-! (L.Right = X o #L.Right) and T.Ini(X)

procedure Remove(L: in out List;
X:in out ltcm);

--! requires L.Right /= Lambda

--! ensurcs (L.Left = #L.Left) and

--! (#L.Right = X o L.Kight)

procedure Swap_Right(L1 : in out List;
L2:in out List);

--! ensures (L1.Left = #L1.Left) and

--! (L2.Left = #1.2 Left) and

--! (L1.Right = #L2.Right) and

--! (L2.Right = #L1.Right) -

private

type Representation;
type List is access Representation;

end Lists;

'Speciﬁcntion of a List Component
Variaii

Although the above description layers a
stack package on top of a pre-existing list
component, it is certainly plausible that one
could also use alternative abstract data types. For
instance, the students might be asked to
implement a stack layered upon a deque or a
standard FIFO queue rather than a list. They also
could be asked to analyze the efficiency of each
operation in comparison 10 other strategics, As
an example using a FIFO qucue to build a stack,
if the push opcration executes in constant time,
then the pop opcration must run in lincar time

duc to the need to retrieve the clement at the end
of the qucuce since the ordering of the two data
structures (i.c. FIFO versus LIFO) differs.

from-scratch
Gouls

In addition 0 the principles named in
sections two and three, this lab introduces the
following ncw concept:

-- Usc of access types w cfficiently implement
componcnts from-scratch. ’

Descrioti

This scction describes variaiions 1o g
laboratory assignment that is often presented
toward the end of a semester. It tends to focus
morc on specific details of implementing
componcnts (c.g. using pointers). It builds upon
the previous two discussions by requiring the
students to finally write. lower level
implementations of the list component. The
stack package will still be layered on top of the
list but in this case the students acquire a fecl for
using access types to represent unbounded
components. .

Variai

Several possible variations could be
suggested toward implementing the list in ways
other than pointers. The list itself could be
layered upon an already assembled component or
the implementation details might opt to focus on
an array based approach, Additionally, rather than
concentrating on using a list to construct the
stack as in section three, the idea of pointers
could be used to implement the stack directly
which would allow one to eliminate the need for
implementing lists altogether. Also, secondary
operations for lists could be requested similar to
those described in the first assignment. Students
might be asked to implement a secondary
opcration which performs a Copy_List, using the
primary Swap_Right operation, from one list
variable to another variable. Correspondingly, the
students may be asked to write secondary
operations for the list package to provide the
facilities for printing and reversing lists.

. A proviso could be added to the
assignment which states that all primary
opcrations need to be written in constant time,

11tk Annual National Confercnce on Ada Technology 1993

. . PR . “ . . .

This would be menioned in conjunction with a
statement reminding them that the implementer
and client of a component are oflen different
individuals. With this in mind, the students will

‘come to realize the need for efficient

implementations since the client will probably
decide to rewrte the component themselves from
scratch if the component does not meet their
performance requirements. In this paper we do
not go into any details on hew the list operations
are constructed in constant time but additional
information on implementing unbounded
reusable components can be found in [3].

S _Conclusions

The structure of most current curricula

tends to introduce the fundamental principles of

computer science void of any particular context.
An introductory course based on a software reuse
setting would assist in providing a needed contcxt
to introduce these principles. Early exposure to
these principles would aid students in applying
the ideas toward a vast majority of the
programming projects that they would encounter
throughout the remainder of their undergraduate
careers. :

In this paper we presented one approach
toward providing a context for teaching the
fundamental principles of computer science. With
our approach, laboratory assignments are used to
inculcate the fundamental principles of computer
science whereby software reuse is used as a
primary motivator. As examples, a subset of our
laboratory assignments currently used at the West
Virginia University were described. These
assignments first require the student to become a
client of reusable components. Later in the

" semester they are given the opportunity to

actually implement their own components at a

lower-level (e.g. using pointers).

There is still much work that needs to be
done with the implementation of our approach.
For example, most of the proposed laboratory

-assignments that were mentioned under the

Variations sections need to be constructed. We
are also currently working toward conducting a
survey to determine the impact of the reuse-based
approach as being applied by previous students in
other courses in our curriculum,

Acknowledgments

I am indebted to my advisor, Murali
Sitaraman, for the help he has offered in
completing this paper. His invaluable

suggestions were always beneficial whenever 1

- found myself at a crossroad.

Selected References
1. Booch, G., Softwdre Components with

Ada, Benjamin/Cummings, Menlo Park, CA,
1987.

2. Edwards, S., An Approach for Construciing
Reusable Software Components in Ada, IDA

Paper P-2378, Institute for Defense Analyses,
Alexandria, VA, September 1990,

3. Hollingsworth, J.E. and Weide, B. W,,
"Engineering ‘Unbounded’ Reusable Ada
Generics,” Proceedings of the Tenth National
Conference on Ada Technology, ANCOST, Inc.,
Arlington, Virginia, February 1992, pp. 82-97.

4, Hollingsworth, J.E., "Software Cumponenet
Design-for-Reuse: A Language finacpendent
Discipline Applied to Ada", Ph.D. dissertation,
Deptartment of Computer and Information
Science, The Ohio State Uriversity, Columbus,

'OH, 1992.

5. Harms, D.E. and Weide, B.W., "Copyinyg and

-Swapping: Influences on the Design of Reusable

Software Components”, IEEE Transactions on
Software Engineering 17, 5, May 1991, pp. 424-
435,

6. Krueger, C.W., "Software Reuse”, ACM
Computirg Surveys, Vol. 24, No. 2, June,
1992, pp. 131-184,

7. Muralidharan, S., and Weide, B. W., "Should
Data Abstraction Be Violated to Enhance
Software Reuse?," Proceedings of the Eighth
National Conference on Ada Technology,
Atlanta, GA, March 1990 pp. 515-524

8. Muralidharan, S. and Weide, B.W., "Reusable
Software Components = Formal Specxf cations +
Object Code: Some Implications”, Third Annual
Workshop: Methods and Toois for Reuse,
Syracuse, NY, June 1990.

9. Sitaraman, M., "A Class of Programming
Language Mechanisms to Facilitate Multiple
Implementations of a Specification”, Proceedings
of the 1992 IEEE International Conference on
Cgmputcr Languages, San Francisco, CA, April
1592,

11th Annual National Conference on Ada Technology 1993

!

44

10. Sitamman, M., Wckeh, L., and Harms,
D.E., "On the Specification of Reusable
Software Componcrds”, /aterrational Journal of
Software Engineering and Knowledge
Engineering, 3, Junc, 1993, 10 appear.

11, Weide, B.W,, Ogden, W.F, and Zweben,
$ H, "Reusable Software Components”,
Advances in Computers, M.C. Tovits, ¢d.,
Academic Press, Vol, 33 (1991), 1-68.

Biography

Jeff Gray can be reached at 1027
Grandvicw Rd., Glen Dale, WV, 26018, He
- holds a Bachelor of Science (1991) degree from
West Virginia University and is currently
pursuing the Master of Science degree.

DOMAIN SPECIFIC SOFTWARE ARCHITECTURES:
A PROCESS FOR ARCHITECTURE-BASED SOFTWARE ENGINEERING

- Christine Braun
Raymond Coutant
GTE Federal Systems
15000 Conference Center Dr.
Chantilly, VA 22021

James Armitage
GTE Communications Systems
Resident Affiliate, Software Engincering Institute
Camcgic Mellon University
Pittsburgh, PA 15213

Summary
TE is the Command and Control domain contractor
tor DARPA’s Domain Specific Software ‘
Architectures program. The objective of this program
is to devclop and demonstrate an architecture-driven,
component-based capability for the automated
generation of command and control (C2) applications.
Such a capability will significantly reduce the cost of
C2 application development and will lead to
improved system quality and reliability through the
use of proven architectures and components. This
paper describes GTE's approach to the program,
focusing in particular on the domain-specific reuse-
based software lifecycle.

The DSSA Concept

DSSA is bascd on the concept of an accepted gencric

software architecture for the target domain. As
defined by DSSA, a software architecture describes
the topology of software components, specifics the
component interfaces, and identifies computational
modcls associated with those componcents, The
architecture must apply to a wide range of systems in
the chosen domain; thus it must be general and
flexible. It must be established with the consensus of
practitioners in the domain,

Once an architecture is established, components that
conform to the architecture-—i.¢., that implement

elements of its functionality in conformance with its
interfaces—will be acquired They may be acquired

by identifying and modifying (if required) existing
components or by specifically creating them,

The existence of a domain-specific architecture and
conformant componcnt basc will dictate a
significantly differcnit approach to software
application development. The developer will not wait
until detailed design or implementation to scarch for
reusc opportunitics; instead, he/she will be driven by
the architccture throughout. The architecture and
component base will help define requirements and
allow construction of rapid prototypes. Design will
use the architecture as a starting point. Design and
development tools will be cutomated to “walk
through” the architecturc and assist the developer in
the sclcction of appropriate components. The ultimate
goal is to significantly automate the gencration of
applications. A major DSSA .ask is to define sucha
software lifccycle model and to prototype a
supporting toolset.

These activities arc accompanied by extensive
interaction with the development community for the
target domain, and by technology transition activitics.
One aspect of this is that each domain tcam is working
closely with a DoD agency that carrics out major
developments in the designated arca. The GTE tcam
is working with the US Army Communications and
Electronics Command. .

Why Command and Control?

There are many reasons why the command and

control domain is an excellent target for DSSA
technology. It is a high payoff area; command and
control systems are nceded even in the current
military climate. (This is particularly true when one
recognizes that applications such as drug interdiction
and emergency relicf fall within the C2 “umbrelia”.)
It is a well-understood area; most of the processing
performed in C2 applications is not algorithmically
complex. However, C2 appiications arc very large,
and much of this size comes from repeated similar
processing—for example, parsing hundreds of types
of messages. In addition to this commonality within
applications, there is much commonality across
applications. Multiple C2 systcms must handlic the
same message types, display the same kinds of world
maps, clc. '

The kinds of commonality in C2 applications arc very
well-suited to DSSA techniques. In some arcas,
components can be reused identically; these can be
placed in the DSSA component base and highly
optimized. In other arcas, components will be very
similar in nature but differ in the parnticulars, e.g.,
message parsing. These areas are a natural fit to the
DSSA component generation technology, allowing a
table-driven gencrator to quickly create the needed

specific component instances.

GTE’s Approach
Figure 1 illustrates GTE's overall approach to the
DSSA program.

- Initially, project work follows two parallcl thrcads

STARS,

- ARCADIA,
other ISTO

Commercial
Off-The-Shelf

Domain Specific
C? Domain Software
Knowledge Lifecycle and
Methodology

expertise

methodological
basis

offorts

(COTS) Tools

APS
Application
Generator

environment/
too! basis

generates

X

[| ©?Domain components \ Ooen Tool
Specific pen Too
Software - _provides suppon for Architecture

Architecture supports !
. . generation

'aar'c':to'»:tee‘;;t re ¢ includes
‘ 5 defines/provide .

C* System componants Reusable '
Shadow Project Ccmponents
: provides and Library
uses

Technology
Transfer

Figure 1. GTE’s DSSA Approach

The first is defining a software lifecycle process
model appropriate to architecture-driven software
development and developing a toolset to support that
process. The second is establishing a capability that
implements the process for the command and control
domain, based on a C2 architecture and a set of
reusable C2 components. '

‘The DSSA process model addresses all aspects of the
software life cycle. It describes activities for
establishing system requirements, developing the

~ software system, and sustaining the system after

delivery. The detailed process model identifies roles
of government (e.g., PEOs, PMs), developers,
maintainers, and reuse library organizations in an
architecture-driven, reuse-based lifecycle.

The DSSA toolset will support all of these activities,

. automating them as far as possible. In particular, it

will automate system development activities by using
the architecture as a template, guiding the selection of
available reusable components, and automating the
generation of specific required components. The

toolset will be constructed insofar as possibie from

available tools—both commercial products and
products of the research community. In particular, it
will make use of USC/Information Sciences
Institute’s APS application generator, DARPA/
STARS reuse libraries, and DARPA/Prototech tools.
Open tool interfaces will be emphasized to minimize
specific tool dependencies, thus making the toolset
usable in the widest range of environments

Fundamental to the C2 DSSA capability is the
development of a C2 software architecture. This

starts with development of a multi-viewpoint domain

model, created through interaction with all elements
of the DoD C2 community. Tools/methods used in
modeling include IDEFQ, Requirements Driven
Development (RDD), and OMT object modeling.
From this set of models, an object-oriented software
architecture is being developed. The architecture will
tie back to the multi-viewpoint model so that
mappings to different views of the domain functional
decomposition are apparent. (George Mason
University’s Center for C3I is playing a major part in
this modeling and consensus-building activity.) A
base of components conforming to the architecture
will then be developed. Many of these will be
existing components, perhaps modified to fit the

architecture, Others will be automatically generated
using APS,

The DSSA capability will be demonstrated by
development of a prototype C2 subsystem, most
likely from the fire support area. An independent
metrics/validation task will assess the effectiveness of
the approach and gather metrics. The methodology
and toolset will be revised based on findings and
further necessary research will be identified.

Throughout the program, a technology transfer task
will present results in conferences, papers, seminars,
and short courses. The George Mason University
Center for C3I will serve as a focal point for
technology transfer.

DSSA Lifecvcle Overview

Figure 2 presents an overview of the DSSA lifecycle.

. The shaded boxes in the figure represent architecture

development activities and products. These establish
the basis for subsequent development of specific
applications in the domain. The domain reference
requirements define the functional and performance
requirements that characterize systems in the domain.
These are then mapped to a reference architecture for
the domain—a generic architecture that can be
adapted to build specific systems.

Components that conform to the reference
architecture are then developed and/or acquired and
cataloged in a reusable component library.

The clear boxes in the figure represent the activities
and products of target system generation. These are
the activities in which a developerof a specific system
makes use of the architecture products to construct
that system. First, through a process of requirements

_elicitation, the target system requirements are

analyzed and expressed in terms of the reference
requirements model. Then, based on this
correspondence, the reference architecture is
instantiated (adapted, filled in, modified as necessary)
to create a design architecture for the specific system
to be developed. Components from the library are
then used to realize the design—i.e., to create the

~ target system implementation. The design, as it is

based on the same architecture that formed the basis
for the component collection, largely automates the
component identification/selection process,

:‘&mﬁ" [-mqﬁym Reussbie
7 ~— "Hcition -
- 4
. Target System
" De
.\ Support
N
Tagat §
Deg .
‘
Sysiam
. / A

Y

D Target System Generation

Part of Each

Figure 2, The DSSA Life Cycle Model

The DSSA framework also establishes a natural basis
for construction of executable prototypes and
simulations. Such prototypes can be constructed from
the reference architecture and library components in
order to help refine requirements and assess
performance. The following sections describc DSSA
roles and processes in more detail.

DSSA Roles and Agents
As part of understanding the DSSA development
process, it is important to understand the kinds of
individuals and organizations that participatc in the
process. In this characterization, we adopted

Tlal A.L...-% we.a ¢ t -~ - . LY -—

descriptive terminology used by the Software
Engineering Institute's process description project.
This approach begins by defining process roles and

_agents.

DSSA Roleg

A role is a uniquely-identified class of individuals
based on qualification, skills, or responsibilities that
perform specific activities in the process. In addition
to the traditional software development roles, the
DSSA process defines two new roles:

The Domain Expert. The domain expert is an
individual who has wide experience in applications

that distinguish this domain, To be considered an
“expert” for this domain, the individual should be able
to express application requirements in the framework
of a modeling technique intrinsic to the DSSA
development environment. In addition, the
requirements that are most critical for the domain
expert are those that reflect a complete understanding
of end uscr needs. Evaluation of design decisions by
the domain expert should reflect the user’s

perspective.

Domain experts help define and model the reference
requirements and continue to be a resource for
evaluation and cnhancement of applications. They
are in communication with and represent the nceds of
the end user. Examplc domain experts might be
military requircments developers in organizations
such as TRADOC. In the commercial world, they
might be people in a vendor’s marketing organization
who specify what the market wants and set the
direction for future products.

An experienced software engineer would not be
considered a domain expert on the strength of
development of applications in the domain alone; he
or she would need expert knowledge of the end user’s
future as well as present needs. Domain experts most
likely would have been end users themsclves at one
time,

The Domain Architect. The domain architect is a
system/software engineer who has significant
experience developing applications in this domain but
docs not necessarily have the domain expert’s
understanding of user needs. This individual must
have in-depth knowledge of all aspects of the DSSA
process and products. Together with the domain
expert, the domain architect elicits and models
domain requirements. In addition, it is his or her task
to transform the refercnce requirements to a reference
architecture for the DSSA environment. Besides the
models of the reference requirements, the assets
available to the domain architect would include:
consensus models, component class specifications,
and reusable components. '

The domain architect’s products are continually
evolving through feedback, evaluation, and
restructuring of the environment in addition to the
normal system maintcnance functions. Maintenance
is much more complex in DSSA than in traditional

_ software procedures, as ‘e will note later.

DSSA Agents

An agent is an cntity that enacts or participates in a
DSSA process.- An agent may be an organization or
a designated role within an organization.

Domain Manager. The organization managing a
family of related systems within a DSSA domain is
referred to as the domain manager. This is the
organization that will gain directly from the common
technology base of a domain-specific software
architccture. For cxample, a military Program
Executive Office (PFO) might be a domain manager.
In industry, a business arc or program officc manager
might be a domain manager. Additional ‘
responsibilitics are to provide direction to program
managers, control budgets and schedules, and set
strategic dircction for the evolution and use of the
DSSA environment. The domain architect’s role is
completely incorporated in this organization. The
domain manager also enlists the aid of a domain
expert.

Application Developer. An application developer
may be a contractor, vendor, or government
organization that develops new application systems.
This organization must practice a software
development process based on the reference model,
reference architecture, and library components. With
the help of a domain expert, the application developer
builds target systems that are extensions, tailoring, or
modifications of the refercnce requirements and
architecture.

End User. An end user is an organization that uses the
system built by the DSSA process. Although the end
user need not have knowledge of the DSSA
development environment per se, he or she provides
important information as to the content of domain
knowledge, new and changing requirements,
adequacy of documentation, and system
effectiveness. User needs are dynamic; static systems
become obsolcte. Therefore, a domain expert
constantly revises his or her domain knowledge, and
end users are a key input to this. Not only applications
but reference requirements and architectures may
need to reflect the end user inputs.

Library Center. The library center is an organization
responsible for acquiring and maintaining the

11eh Ananwial Marianal CAanfarnncn an Ada Tanrheatlase 1007 En

51

domain-specific components and managing the
library. The library center may be in the dircct control
of the domain manager organization or it may be an
indcpendent, external organization (for example, a
STARS or CIM library). The task of this organization
is to provide access to an organized collection of
rcusable sofiware components. It classifics and

installs components, performs configuration

management, and collects usage metrics. It develops
strategics for component acquisition and provides
uscr services. The library center also coordinates
maintenance and enhancement of components,
whether in response to specific application needs or to

reflect revisions in reference requirements and

“architccture.

\laintenance Center. A maintenance centcer is an

sreanization that changes and improves fielded
stems. For example, a Post Deployment Support
-nter (PDSS) is a maintenance center. The DSSA

approach increases the operational complexity of this
type of organization. Components requiring
maintenance may not “belong” to the center, but may
come from a reusc library. Furthermore, necessary
changes to refercnce models and architectures may be
identified. Accounting forthe possible ripple effect of
any particular change to the family of systems
requires analysis. Areas of requirements traccability,
testing, and redesign may not follow traditional
procedures. Maintenance is an important
consideration in the design of the DSSA process and
development environment,

The DSSA Process

We have developed a detailed IDEFO modcl of the
DSSA process. The top level diagram of that modcl
(Figure 3).identifies the major four phascs of the

DSSA life cycle. A description of cach phase, withiits

major proccss steps, follows.

. C1 : .
iomallgdge revisions to
now ; .
> additional components W
architecture needs/ component
Estabiish 176! ramts model & arch anomalies . o
12 Domain)
domain- Sgecmc
B\g%&enden' ™Y component ‘librarian/
éeacshenology gl::osnipeclﬂ developer/
existing ?335‘.,'2'3? f
components Populate A
" andMaintain
. Ubrary
2) C2
system
o ___library ..} \requirements
eomponentsw : ' ™\
oo ’ J
1 Bulld Ap-
velopment o1
environment new \——p{ Plications -0
components 3
application
systems ‘
\.
Operate and
alntain
C Appins.
repaired components a

Figure 3. The DSSA Process—Top Level

11th Annual National Conference on Ada Technology 1993

‘

N '
L

This is the set of activitics performed by the domain
owner :. establish a DSSA capability base for the
domain. The domain is analyzed and a domain-specific
software architecture (reference architecture) and
development environment are provided. Specific
activities are:

Model Multiple Views. Multiple views of the domain

are provided by domain experts 0 ensure that the
broadest range of intrinsic concepts is addressed These
multiple views may reflect different types of systems
within the domain (for example, strategic vs. tactical
C2 systems), or may reflect different perspectives on
the domain (for example, that of the soldier in the ficld
vs. that of the strategic planner). These views are
expressed in a set of domain models, developed using 2
multiparadigm combination of object-oriented,
"dynamic, and functional descriptions.

Establish Consensus Model. A consensus of the
generic domain requirements is developed to build a
reference requirements model, identifying the
functional and performance characteristics of the
family of systems. This is a model of the reference
requirements that will be the foundation for a family of
DSSA systems; it is one of the key DSSA products,
playing a key role in application development. This
activity also establishes common terminology to
describe elements of the domain. Such consensus
building will draw on the multiple view models, but
will also employ workshops or similar interactions to
help build agreement.

Allocate Requirements to Reference Aghi;g. cture. The

reference requirements are allocated to architectural
elements (i.e., system objects—software or hardware)
to create a reference architecture for the domain. The
reference architecture identifies objects, their
interfaces, and their topology. It serves as a basis for
design of specific systems in the domain. The
architecture will continually evolve as new needs arise
from various sources such as the application developer
or the maintenance center.

Specify Reusable Component Classes. The
architecture defines classes of software objects (for

example, forms manager, message handler) that can be
used to build applications following the architecture.
Multiple components can be provided to implement
each class, varying perhaps in functional, performance,
or platform particulars, but to work with the

- architecture each must conform to the a specification

for that class. The specification will identify all
interfaces and behavioral characteristics on which the
rest of the architecture depends.

Tailor Environment to Domain. The DSSA process

assumes the existence of a DSSA development
environment, i.e., a set of tools that support the process
steps described here. The base toolset is domain
independent—it can be used to support a DSSA process
for any domain—but several of the tools are tailorable
or parameterizable based on the reference requirements
and architecture. This step creates these tailored
instances of the tools for the domain being addressed.

Populate and Maintain Library

This is the set of activitics that create and administerthe
collection of rcusable components that implement the
DSSA. Components mecting the component class -
specifications in the reference architecture are
collected, modificd, and/or developed. Specific
activitics are: »{
Develop Acquisition Strategy, The domain architect
identifics sources that will provide one or more
components mecting the component class
specifications. An acquisition strategy will be ;
developed to identify components and acquire them.
Approaches may include: ;

|
I
I
|
|

* use as-is existing components
* reengineer existing components
¢ build an application generator

1
1
!
|
* develop components manually |
Provide Components. The acquisition strategy is T'
implemented to provide components conforming to the
architecture. If problems arise in doing this—for
example, ambiguities in the class specifications—
feedback must be provided to the domain owner.

Install in DSSA Library. Developed components are
tiien installed in the library support:ng the domain.
Depending on whether the library is “owned"” by the
domain owner or is an independent “public” library,
this interface may differ. If a public library is used, the
domain owner must be proactive in ensuring that
needed components are added to the library and
continue to be available, at the same time conforming
to any entrance requirements the library might have. It
is important to note that library components are not
necessarily code; typically design, documentation, and

11th Annual National Conference on Ada Technology 1993

52

test components will also be provided.

Build Applications

This is the sct of activitics required to build a specific
application using the DSSA library and the domain-
specific development environment. Specific activities
are defincd below. (Note that, while names are like
those in the traditional waterfall model, activities are
quire different.) The DSSA eavironment will provide
_comprehensive support for this phase, incorporating
an intelligent decision support capability that -
automates cach activity, additionally providing a
requirements traceability mechanism and supporting
prototyping, evaluation (metrics, ctc.) and testing.

At any step in this process, any deficiencies or necded
improvements in the reference requirements,
architecture, or components are fed back to
wsponsible organizations (the domain owner or the
Jrary manager).
Develop Requirements. In this step the reference
requirements model is used as a basis for stating the
requirements for the specific system to be built (the
target system), The target system’s requirements are
expressed in terms of the reference model, for
example: '

» parameterized requircments, €.g.,
performance measures, are supplied with
target system values

» selections among alternative capabilities are
made '

» unneeded capabilities are eliminated

e additional detail is supplied as needed

elicitation process, interacting with the designer to
create the target system requircments. Rapid
prototyping can easily and naturally be included to
help clarify requirement distinctions.

Design Application System. The reference

architecture is then instantiated and particularized to
establish a design architecture for the target system.
This process is guided by the mapping from the
reference requirements to the target system
requirements, and in fact occurs concurrently with
that activity. As each requircment is specialized for
the target system, the corresponding element of the

" The DSSA tools will support this requirements

reference architecture is adapted to become a part of
the target system architecture. Design components in
the DSSA library are extracted to build the design.

. Implement System.

Creation of the application system implementation
(the actual codc) follows naturally and automatically
from the preceding steps. As each design clement is
choscn, a corresponding library code component is
identified. Where the developer must provide
adaptation or “glue” software to connect these
components, the tools identify this need arid provide
the necded interface specifications. If the toolset
provides a component gencrator for the particular
component class, the developer is automatically
guided to its user interface, and it is designed to
gencrate only components that conform to the
architecture,

nd Maintain Application

Once built, the application system is opcrated in the
ficld and maintained by the maintenance cenler
Specific activitics are:

Carry Out Application. The application system is
dcployed and operated in the field.

Assess Effectiveness. As part of its normal operation,
the effectiveness of the system is assessed against the
needs of its continually changing mission. Needed
changes and corrections are identified and rcponed to
the maintenance center.

Mamtam System. The maintenance center responds
to all requests from users for changes or corrections to
the system. This is their traditional role; however the
DSSA approach requires a much different approach to

————system maintenance than when systems are built
independently. An enhancement or correction may

affect documentation, system requirements, library
components, and eventually reference requirements
and architecture. Some of these types of components
may not be under maintenance control of the
maintenance center. For example, library
components may bc maintzined by the library
organization, and the reference requirements and
architecture may be maintained by the domain owner.
Further, changes to these entities will potentially
impact more than the 0. ¢ application system that
requested the change. A close working relationship

11th Annual National Conference on Ada Technology 1993

~
~

~.

|

between the domain owner and the maintenance
center is critical to the success of this activity.

Implications and Future Directions

DSSA promises a real revolution in the way we build
software. However, as this brief overview indicatss,
the DSSA process will impact significantly the roles
and responsibilities of all organizations involved in
the creation and support of software. This creates a
challenge to the industry overall, but meeting this
challenge must start with the DSSA teams, Itis
essential that we develop a process that is:

» clearly defined and described

» comprehensive—addresses all clements
impacted by the change

« practically realizable with todav’s resources
» supported by tools
» accepted by participants in the process

The process model described in this paper (and in
more detail in the referenced materials) is a beginning
at meeting these needs, but it is only a beginning. The
model will evolve as we gain expericnce on the
project as the first practitioners of DSSA, and as we

explore the limits of what is possible in tooling to
support the process. '

Acknowledgment
The work described in this paper has been supported
by the Defense Advance Research Projects Agency

through U.S. Army Communications-Electronics
Command Contract No. DAAB07-92-C-Q502.

‘ References

[1] Ammitage, James, “Process Guide for the
DSSA Process Life Cycle,” PD-081 DSSA-
PG-001 Rev. 0.1, Software Engineering
institute, 10/92.

[2] Braun, Christine, Raymond Coutant, and
Jorge Rodriguez, “DSSA Process Model”,
GTE working paper, 1992,

[3] Braun, Christine, W. Hatch, T. .
Ruegsegger, B. Balzer, M. Feather, N.
Goldman, and D. Wile, “Domain Specific
Software Architectures— Command and
Control”, Proceedings of 1992 IEEE
Symposium on Computer-Aided Control
System Design, Napa, CA, March 1992.

11th Annual National Conference on Ada Technology 1993

54

55

DOMAIN ENGINEERING:
Establishing Large-Scale, Systematic Software Reuse

William R. Stgwart

Willlam G. Vitaletti

SofTech, inc.
Alexandria, VA

Abstract: Domain Engineering is a collection of
activities (Domain ldentification, Domain Analysis,
Domain Design, Domain Implementation) that
provide generic requirements and designs for a given
domain (family of systems or common system service).
These, in turn, are tailorable to a particular system
based on differing factors such as mission, siie,
environment, new technology, and user needs. The
products ideally contain the knowledge base of the
domain and include reuse guidance incorporating
rationale, alternatives discarded, and lessons learned.

Keywords: Domain analysis, domain design, reuse,
systematic, opportunistic, components, object-
oriented, commonalities, _adaptation, generic
requirements, generic design, DSSA, and generic
architecture.

1 INTRODUCTION

Software reuse is widely recognized by industry and
government alike as a primary mechanism to combat
today's software crisis. Many experts insist that
software reuse is an effective means to increase
software development and maintenance productivity,
leads to greater quality and more reliable software,
and can preserve software engineering expertise'.
Although increased productivity is often cited as a
key reason to practice software reuse, the most
significant benefits may come from increased
reliability and lower software maintenance costs.

However, even with the potential to yield higher-level
. software productivity gains and demonstrated results

of several reuse case studies, there still remain many
barriers to reuse. To overcome these barriers and

maximize benefits, the software reuse process requires
planning and methodical integration into the software
development life-cycle (SDLC).

Employing a domain analysis and design process is
one of several existing approaches to effcctively
identify commonality and enginecr systems for reuse?,
In general, domain analysis and design is the
systematic exploration of related software systems to
discover anc ploit commonalities; to produce a set
of commor .pabilities, processes and data for a
"family” .- ..ass of systems; to represent and model
commonai.ces in a usable form; and to provide a
method *to map commonality to specific reuse
instances. The primary objectives of domain analysis
and design are to understand the ‘domain, to support
user-developer communication, to provide reuse
requirements, and to develop products that support
implemeatation of new applications’. By applying
domain analysis modeling techniques and designing
generic architectures, engineering activities focus
primarily on developing a set of common
requirements and exploiting adaptable architecture(s)
for a "family" of systems (hereafter referred to as a
domain),

1.1 Types ot Soitware Reuse

Software reuse doesn't just happen, it must be
integrated into the SDLC. Many software industry
leaders have adopted either an opportunistic or a
systematic approach to developing reusable software.
Opportunistic (sometimes (cferred to as ad hoc) reuse

has been practiced for years in an unstructured
manner by those sharing code modules. The potential

11th Annual National Conference on Ada Technology 1993

;
-

~

A

v
-

.

.

”

benefits of this software parts-based approach to
software engineering are significant, but they are
bascd on assumptions that a given domain exhibits
significant commonality. Commonalities are then
exploited through the development and application of
reusable software components or parts, In this
approach, reuse benefits are achieved only at the
component or part level,

In order to realize greater productivity gains, which
are needed to overcome the software crisis, a
systematic approach to reuse is most useful. This
type of approach is formalized at more than an ad
hoc, code-sharing level. Structured, repeatable
methods are employed to focus on emerging
technological software engineering activities, such as
domain analysis and design, to maximize the benefits
of reuse. Domiain analysis is a methodical process, or
set of activities, used to acquire and model an
understanding of the domain and the specifications
common to systems within the domain. Domain
design activities use the domain model and
specifications to develop generic domain designs as
configurable or adaptable frameworks for conistructing
new systems in the domain. Reusable software
comporents that implement domain specifications are
then acquired and/or developed for next generation
system development, New development efforts in the
domain can reuse domain specifications, instantiate
domain design(s) and reuse the associated lower-level
implementation components, thus realizing far greater
benefits of reuse.

1.2 Problem Space vs, Solution Space

The domain problem space is the set of requirements
that future systems in the domain will need. The
Aomain solution spare represents the implementation
of the problem. Successful reuse requires the
developer to match a current set of problems (system
requirements) to previous solutions. The design
and/or implementation of the previous requirement
can then be adapted as a solution to the current
problem. Domain engineering provides a systematic
approach that concentrates specifically on defining
problems and producing adaptable solutions in a
domain in order to increase productivity in future
system development activities®. This process, which
complements and facilitates system development, is
an essential part of an effective, reuse-based
development methodology.

11th Annual National Conference on Ada Technology 1993

121 Problem Space. In traditional
system software development, problems are
formulated and defined as requirements for specific
software systems (or parts of systems). Domain

- analysis identifies and models the problem space for

a "family" of systems (domain), and provides reusable
requirements to address recurring problems in the
domain. The problem space defines common
capabilities within the domain, as well as associated
variations and combinations. It is essential to define
domain capabilities to be effective, flexible and
remain viable over changes in technology, time,
needs, people and budget. To support these changes,
problem space requirements, must be adaptable and
understandable.

Domain models are developed as abstract
representations of systems existing in the domain
and/or future domain requirements. These abstract
domain representations serve as models for
constructing future systems. The interpretation of
domain models is flexible and allows altenative
realizations to accomplish different needs.

1.2.2 Solution Space. Domain design
focuses on the solution space where solutions take the
form of design and other artifacts that together
constitute a framework to address the problems in the
domain. Domain design applies system problem
solving to construct a geaeric, adaptable design that
satisfies domain requirements, This generic design
serves as the basis for the system software design
activities. During system software design, a software
architecture that exploits the implementation
dependencies of the target environment is constructed.

Domain architectures allow the developer to create
robust language-independent solutions satisfying those
requirements, without concern for Fow the software
will be implemented. This preliminary, logical
design is the developmental bridge between the
problem domain and the software implementation or
solution space. The resulting problem domain and
solution space mapping is essentia! to effectively
maximize the benefits of software reuse.

123 Increased Bepefity. There is

potentially a much greater return on investment by
employing a systematic reuse-based approach and

i
/

56

L]

applying the domain analysis and generic architecture
design techniques descrived in this paper. For
instance, if requirements for developing a new system
match (to a certain degree) an existing domain model,
it may be more feasible to adapt the corresponding
domain design and reuse large portions of associated
existing system components, such as detailed
design..\ and code.

This paper presents one method of domain modcling
and generic architecture design, and includes essential
activities in conducting the domain analysis and
design process to enable software reuse and maximize
the associated ben:fits.

2.0 DOMAIN ENGINEERING LIFE-CYCLE

" Domain engineering is the process by which all
domain products are created. The four major activities

of domain engineering are:

1. Domain Identification

2. Domain Analysis

3. Domain Design

4. Domain Implementation”

As in standard software dcvelopmcnt various life-
cycles are possible, from waterfall to spiral to
incremental.

The products of domain engineering rclate to the
application life-cycle as shown in Figure 1. The
domain models, from which the generic requirements
are generated, are composed of graphical
representations and object specifications. The
architectures are composed of generic designs.

_ After completion, the domain products are placed in

reuse repositories for accessibilitv.

a
{ .)
, | and |
Dome: Requirements
> Anayve > c’:r:pum mm
Domain Doslgn Software
> Design > Components > Design >
[Code, Unitint Code, Unit |
= o Domain
Implemantion > ComTp“untlnh. | "‘%ﬁ" —>
System Test tom
\l Components > ot >
\. J

Figure 1. Integration of Domain Engineering and Application Engineering Life-Cycles.

Domain implementation is baslcally the application of well-known coding and/or re-engineering principles and.

therefore, will not be covered within this paper.

11th Annual National Conference on Ada Technology 1993

i
|
{
I
I
l
!
I
!
I
I
I
I
I
I
I
I
|
]
\

B,

- ' - . - L. . N . . T .
- N ot o . R SRR . v g .
> Il . oo - T~ . s i - - N .

21 _Method Qvervisw

As in the practice of standard software analysis and
design, several domain analysis methods exist at the
present time. In order to classify and combine
common system/software capabilities, the method
presented in this paper is a completely objcct-oriented
approach. This approach was adopted for several
reasons:

1. Object-oriented methods provide inherent
constructs for identifying commonality
(classes), variability (subclasses) and
cardinality (instance connections).

2. Traceability is established on an ebject
basis from requirements through code.
Every object in the requirements phase has
one or more objects in the design and
implementation phase.

3. .The transition from object-oriented
analysis (OOA) to object-oriented design
is greatly simpiified. "Because of thr
difference in aggregation principles,
proceeding from a structured analysis to
an object-oriented design can be awkward.
Since the criteria for grouping functions
are different in the two methods, the
transition from one to the other may
require significant recasting of the data
flow diagrams. This is a laborious process,
which can be avoided by assuming an
object-oriented viewpoint during the

analysis phase™.

4. During the construction of an object, both
during analysis and design, changes within
an object will have little or no ripple
effect in other objects, allowing the
information clustering to proceed without
extensive revisiting of related otjec's.

Although many existing systems have been developed
with functional or hybrid methuds, the information
clustering necessary to identify commonality requires
a complete information restructuring.

The specific graphical techniques currently employed
in this process are Coad/Yourdon analysis notation’
and Buhr '90 Jesign notation®. Several other analysis
and design notations are presently being considered

11th Annual Nutional Conference on Ada Technology 1993

in light of emerging domain engineering needs.

The detailed examples provided herein to demonstrate
concepts were derived from: 1) The US. Amy
Reuse Center (Software Development Center -
Washington) P-ogram Executive Office - Standard
Army Management Information Systems (PEO-
STAMIS) retail supply domain analysis effort; 2)
information from other supply systems
documentation; and 3) ongoing method
enhancements. For this paper, the information has
been greaily simplified for purposes of demionstration
and should therefore be considered in the light of
concept communicatior only.

22 Domain Identification

Beforc an analysis of a domain can bhegin, a domain
must be defined. The first consideration in domain
definition is the orientation of the domain in
question. The domain orientation is either vertical or
horizontal, If the reuse projected involves a family
of related systems, it is said to be a vertical domain®.
If the reuse projected involves a segment of many
families of systems, it is said to be a horizontal
domain (see Figure 2). A mission-specific domain
(e.g., Radar-Guided Missiles or Logistics) tends to be
vertical and a system support domain (e.g., COTS
bindings, GUIs, Communications, or Data Base
interfaces) tends to be horizontal.

In order to understand the extent of the dcmain
engineering effort, the boundary must be established.
The boundary identifies the characteristics that are
used to classify systems as part of a specific domain.
As a high-level example, the Patriot Missile Sysiem
belongs to a Radar Guided Missile domain and the
Sidewinder (infra-red guided) does not.

Example:

Under the PEO-STAMIS domain analysis effort,
approximately 26 systems were identified as
candidate PEO-STAMIS systems. During this effort,
the fundamental capabilities of these systems were
assessed to identify similarities. Organizational
entities were cxamined to identify responsibilities.
The results in Figure 3 portray the domain
organization of PEO-STAMIS. The Supply domain
was chosen from the domains in PEQ-STAMIS in

58

Systam X1 Sysm V.4 Syveam 2.1
—p——‘-—“"‘""‘_‘ i, TSN RS L, (S o s ———— L-.—.-__m.
‘—’_-. T —

("] Oyoom X2 Systam V.3 . Oystim 2.2 “)
~a. por’
~— — o

~"'--~.-0-.——-—---. P S —— '—‘L‘——“.’
Systam X3 System ¥.2 Syvm 2.3
VERTI.AL RFUSE ' HOMITONT AL REUGE

Figure 2. Domalin Orientation (Horizontal va. Vertical)

order to utilize the wealih of available information
and 1o satify the needs of upcomirg Supply systems.

The reuse potential discovered included both
horizontal and vertical reuse. For the sake of brevity,
this paper will focus on vertical reuse. The
boundaries of the domain anslysis were drawn around
the systems that had mpp!y responsibilities (see
Figure 3).

In general, the PEOQ-STAMIS Supply Domain consists
of logistics systems that provide the fundamental
capability 10 supply customers with the assetn
required to accomphish their respective misasions.
Customers and customer needs may vary at different
echelon levels within the Army's organizational
structure. For systems at the trigade, battalion,
company echelon, for example, the customers may he
tactical commanders. Wheress, customers at the
theater, corps and division echelnns may he motor
pool mechanics or intermediate supply points,

23 _Domain Analyais

The objective of domain analysis i3 to identfy,
derive, organize, abmract, and represent the hindy of

- knowledge of a particular domsin' Thiv body of

knowiedge is represented by a domain model
model similar to an Object-Oriented requitements
Analysis (OOA). The difference between a doman
maodel and an (M)A are the additione in the domain
maodel of reuse guidance in the form of adipiation
requirements alternatives discarded. rationale lewsons
learned, and identification of systema supplying o
conruming the domain products This information s
the key to providing the extis information resded 1o
construct requitements for many ‘uture systemr The
domamn madel provides input to hoth the domamn
designer and the application sfiware anatys

DMifferent domain anatysis methods vary in their goals
as 10 the depth of anformation to model. For
example. the Software Fngineenng Institute’'s Feature
Oriented Domain Analysis (FODA) aims at capturing
user-visihle aspects of the problem space as a means
of wlentifving user requirements Additionally, other
methads include all of the problem space agpects in
the domain model as means of “disseminating
knowledge among engineers as a way of improving
the development procese”, "

- The primary steps of dumain analysis ate:

1. Information Gathering and Organiration.
2. Commonality ldentification,

Y Adapranon ldentification, and

4 Doman Model Verification

Thew steps can be petformed in sequence, although
experience hay thown that terations can produce
greater detad and understanding therehy tnereasing
reuse potential Information gathenng tendy o
cartine iota commoenality wlenbfcaten, gt sbrae
documents may referenc s other pubha atinny neeided
or hetpful to the analywaeffont The sdentbi anon of

l PEO-STAMIS]
Lokt chA R S
[Medical] ‘ Logistics Personnel]
;uums f-smne RS-1
i
e e i s v s L se e o - 4 - [p— .
}
[Ma&menance] Transportation |
. SAMS - SAAS.1) . SD% MOD - DAMMS MPM
- SAMS 2 .- SAAS-4 -SPRS R - DAMMS.AY
. SAMS) - SAAS DAO | SPBS HITDA DAMMS.R2
SAMS | TOA - SARSG SUSES G
1 SARSS A L ULLS A e .
_ SARSS 2B 1 ULSS 54 5815 and ISM betong to
muttiple domans

rigure 3. PEO-STAMIS Supply Domain Boundaries.

adaptation requirements often takes place cich time
a commonahty is discovered.

231 ___Information Gathering _and
Qrganization, During this step. the domam analysis
acquire information, at A minimum, in the form of

system documents, planning/concept documents. and
initial doman expert interviews. This information
hecomes the basis for & warking domain knnwledie
base. This knowledge base will be used throughowt
the domamn analysis and design activities before the
compteted products are formally’ certefied and
installed in the reuse repository. ldeally, all
significant information will be included n the
certfied domain products, The types of informatien
to focus on are those that will have some impact on
foture sy stema. Ohsolete or cut-dated information
not maintained in the domam model. although
knowledge of the amount and rate of obsolewence
can help deterimine the stahidty of & doman

The lanwledge bhase needs an organizanongt
structure, Rapid accest to particular groupinge of
domamn information requires an indeung of the
information according to the type of information
acpred fe g, system document v antetview,
oharletr va future need),

2312 Commopslity Identification. In
order to establish a basis for commonality
identification, an entity-relationship model s
constructed (unless one is available from a business
improvement initiative effort). Commonality
identification dctermines, to a large part, the amount
of reuse potential to be realized from the domain
engineering effort. The common information can be

in the form of objects, classes, functions, processes,

entities, relationships, data elements, and so forth,
What is searched for is not necessarily exact matches,
but similarities. Commonality can’be identificd in a
number of ways:

1. Mentification by Domain Experts - Such
as system users, functional proponents,
commanders, and other retated individuals
that have had to work with and understand
the problem domain in question. Their
knowledge of repeated processes and data
manipulation algorithms is extremely

valuable. Different types and levels (ie.,

skill area, rank) of domain experts have
different perspectives that allow multiple
perspectives of commonality.

2. Examination of Analvsis Documentation -
All information in the form of software
engineering data, such as ohject diagrams
(interaction, inheritance, aggregation, etc),
data flow diagrams, state transition
diagrams, and data models, are necessary

“sources for the modeling of the
requircments of the domain. As discussed
in CAMP 3", sofiware components can

~ exist at different levels of abstraction. We
may find similarities at the smallest
component level, at a Computer Software
Component (CSC) level, or at an
architectural level. Often, the sanie
information is represented with aiiferent
formats, terminology, and in different

groupings.

3. Examination of Design Dovumentation -
Design documentation portraying previous
sy stemn solutions can provide commonality
information through the study of the use
of generics, templates, and other reuse
mechanisms. Oftan, a system's analyxis
producta are in a functional decomposition

format. If the corresponding design
employed OOD methods, identification of
problem space objects in the design can
also be useful to the domain analysis
process. This constitutes a reverse
enginecring of the design. The analyst
must, however, be alert to avoid
intrcducing solution space information
into the problem space and remain focused
on only the problem space objects found
in the design.

As in object-oriented analysis, commonalitics are
gencrulized into classes that represent abstractions of
their respective sct of objects. This process is not
strictly top-down (i.e, without regard for existing
assets) in nature, nor is it purcly bottom-up (ic.,
basing analysis only on existing asscts). The goal is
to satisly future requircments with as many cxisting
assets as practicable,

The commonality identification progression docs not
just proceed from the high level of abstraction to the
lowest. Instead, there is a sinusoidal "porpoising”
effect as new information discovered in the lower
levels of detail affect parent classes/objects. There is
an iterative shaping of the classes as new similaritics
are discovered.

233 Adaptation Identification.

Adaptation requirements identify the different
application of the common capabilities. Just as
commonality identification is necessary to establish a
grounds for reuse, adaptation identification is
necessary to tailor the information to particular needs.
Some adaptation factors' are:

1. Flexibility in operation,

2. Mission adaption (needs, threats, etc.).

3. Environment/site adaptation,

4, Platform adaptation,

S, User adaptation, and

6. New technology adaptation,

Thewe fuctors can he identified concurrently with the
commonality identification,

“The techniques in representing adaptation can take

many forms. The generalization-specialization feature
of OOA provides for subclasess where different
configurations can be further represented. The object
specifications have adaptation sections in the clasy/
object, attribute, and operation sections, State
transition and,or structured logic representations can
also identify tailorable needs by modified notation.

Often, another perspective on commonality may be
realized in this step, causing a refinement to a class
content or hierarchy.

In some cases, certain capabilities may be mutually
exclusive and cannot exist together in the same
system. This cardinality can be represented by an
instance connection that denotes a zero-to-zero
relationship between objects/classes.

Example:

The external interfaces to the supply domain are
generalized, as shown in Figure 4,

The supply domain has several common
characteristics in the form of attributes (data) and
operations (functions). Each system in the PEO-
STAMIS domain (or nearly all) possessed all of the
capabilities listed in Table I.

Next, patterns of variations of those capabilities were
sought to identify adaptation requirements. Some of
the differences were attributed to the unique
requirements in the handling of different supply
classes (bullets versus bread, for example). Others
were identified by organizational nceds (in this case,
Army echelons). For example, commanders at the
theater level need visibility and modifiability of the
distribution of stock to the fielded divisions, whereas
unit commanders only need information concemning
their own company inventory.

These groupings led to the formation of subclasses
representing the variations in system responsibilities
(see Figure 3).

23.4_Domain Model Vetification. The
domain model must be verified in order to establish
a reliable baseline. The business process and data
models, if available, should be used as the "doctrine”

- against an operstiona! scenario. Verification cen be

accomplished in the following ways:

1. Inspection - A team of domain experts
examines the model -to verify
completeness and correctness.
Preferably, at least some of the domain
experts will not have taken part in the
information gathering, therefore,
providing an independent review.
Operational scenarios can be used at
this step to assure the correctness of the
model.

2. Prototyping - A small set of capabilities
can be implemented using a prototyping
toollanguage. The prototype would

_ then be executed.

kN Simulation - A simulation model can be
constructed to determine (to a factor of
confidence) the viability of the
allocation of performance requirements,

24 Design Domain

The goal of domain design is to produce a Domain-
Specific Software Architecture (DSSA) with reuse

guidelines and classification. A-DSSA is "based on

the concept of an accepte generic architecture for the -
target domain. As defined by DSSA, a software

architecture describes the topology of software

components, specifies the component interfaces, and

identifies computational models associated with those
components.”® Quanrud has stated, "A generic

architecture provides a high level design for a family

of related applications and a set of reusable

components that are specifically intended for use in

those applications, The reusable components are

designed to work together and should provide most of

the code that would be included in a typical

application. Actual applications are developed by

adding application specific components and adapting

the reusable components to meet the requirements of

the application. Adaptation of a reusable component

may take the form of modification, extension, usc-as-

is, or replacement.” prescribe a specific completion

point for the DSSA, but provides for the tailoring of

the level 12.

The level of detail in a DSSA, st the time of this

SHIPMENTS '
CATALOQ INFO STATUS
Y
suPRLUER g fran CUSTOMER

STATUS

Figure 4. Supply System External interfaces

Table I. .Comﬁ\on Supply Operations and Attributes (E'xamplo)

m
ATTRIBUTES ' '

Transactions
Stock Quantities
Catalog _ S

OPERATIONS

Accept Incoming Request (for Stock)
Request Transaction Receipt/Status
Provide Transaction Receipt/Status
' Cancel/Modify Incoming Request
Issue Stock

Receive Stock

Perform Inventory
"Maintain Stockage Levels
Receive/Update Catalog

Digseminate Catalcg

- ¢ es . ¢ a - - .. - - - cann

QU
wm‘gmmn.vg
e e]
Romcnt W;zagn
Aamivy E ke
e e
Potam
Matriein Lovale
) [
gmm
| | : -
m__ y.
- Lo adia gty WRTE RS
- e waERa .
| b B

writing, has been nominally equivalent to a hirh-level
design. This DISA/CIM Domain Ana' < and
Design Process does notof detail by proy wrq a
completion’ criteria control to be determiicd by
managemeﬂt.

The purpose of the DSSA is to provide a framework
illustrating the major components and their interfaces
that satisfy the requirements of the domain model,
from commonality to adaptation. This includes reuse
guidelines, rationale, and discarded alternatives, in
order to give the software designer an understanding
of the avenues already explored. The reuse
guidelines help the system designer understanc the
assembly and tailoring of an application from a
DSSA.

As in standard software design, the qualities of
reusability, adaptability, and efficiency must be
balanced to meet the demands of the domain under
development. For example, in a "hard” real-time

Figure 5. Variations Depicted as Subclasses

environment, some aspects of reusability and
tailorability may have to take secondary consideration
to efficiency in order to meet performance
requirements™, Other domains, especially
Management Information Systems (MIS), can realize
the cost-saving benefits of more thorough abstraction,
encapsulation, and parameterization due to less
stringent timing and sizing constraints.

The domain design process is outlined in the
following major steps:

1. Identify Domain Constraints,

2. Collect and Organize Design Information,
3. Identify Potentia;l Design Components,
4. Develop Architecture, and

5. Valicdate Architecture.

The domain design process can be top-down only,
bottom-up only, or a combination of the two. The
third alternative will be presented herein, although
optional processes can be deleted to enable top-down
only.

: 2.4.1 ldentity Domain Constraints. The
goal of this process is to identify all established and
potential constraints affecting the design process. A
number of factors, such as imposed standards,
Commercial-Off-The-Shelf Software (COTS),
Government-Off-The-Shelf Software (GOTS), and
hardware, can limit the choices a domain designer

~ can make. A successful domain design mects as

many constraints as is practicable, thereby cnabling
reuse,

The domain designeridentifics constraining standards,
policies, directives, guidclines, and any other
documents that imposc design guidance on the
domain design. These include decisions as to
environments, COTS/GOTS assets, data
standardization, and other aspects,

The domain designer researches preplanned hardware
constraints to determine if the design:

1. Must be tailored to meet specific goals
dictated by timing, sizing requirements,
or

2. Will be released from previously
established constraints.

The domain d'signer identifies the domain system
boundaries as directed by management, that is, the

_interfaces to other layers/compon-nts in the system.

For example, management guidance might dictate that
a communications domain be implemented without
regard to any particular mission-specific domain.

242 Collec: and Organize Design
Information. The domain designer creates a
catalogue of existing design solutions, domain
constraints, and lessons learned. The catalog is
needed to provide an index for efficiently accessing
pertinent design information without requiring sifting
through stacks of documents or hundreds of files.

' Existing design information takes many forms. Some

projects have complete and up-to-date design

116% Amnval Natiamal Mrafaveannn man Ada Taabaa) s

documeats, while other projects choose not to
maintain or keep their documents. A potential source
of design information can be acquired by reverse-
engineering code, though the algorithmic information
is usually difficult to obtain. Other sources include
repositories, trade journals and publications, text

books, and academic publications.

243 Identity Potential Design
Components. This crucial step enables

construction of an architecture, which is the next step,
by identifying existing quality design components.
This takes place before the actual start of architectural
construction so that available components are used as
the basis for the design. In the past, designers would
often develop a design, then look, often
unsuccessfully, for components that fit the design.
NOTE: This step is optional if the domain
cngincering cffort is top-down only.

Domain designers and implementors identify
components mecting, at lecast partially, the
requirements of the domain model. This provides for
reusability of existing components by using them to
define the design. Ideally, the components have been
developed using similar domain analysis method
paradigms to enable an uncomplicated comparison
task. For example, if the components were developed
using object-oriented design and the domain analysis
method is object-oriented, then the information
restructuring effort will be minimal. If the domain
analysis method is functional in nature, considerable
effort will be required to convert one information set
into the representation of the other.

The engineers assess the reusability by applying

established reusability criteria, This helps to filter out
components that will have little or no value in this
effort, and to focus on the most promising ones. A
number of metrics are captured and the amount of re-
engineering is estimated. Based on these results and
their comparison to the reuse criteria, a determination
is made to either accept the component as a potential
candidate, to reject the component, or to decompose
the component to allow a more complete assessment.

244 Develop Architecture, This
process utilizes components identified in the previous
activity to construct the DSSA. Often, several
alternatives can be derived from existing systems that

1001

satisfy the requirements and constraints. If
eppropriate, one DSSA should be selected that
provides the best solution. In very large domains,
one overall DSSA may not provide enough
commonality to be of substantial use. If for some
reason, existing architectures are not used/available,
then the standard software design principles are used
to create the DSSA from the domain model, within
the identified domain constraints. Care must be taken
to adhere strongly to the software engineering rule of
abstracting detail to the lowest level and isolating
implementation dependencies.

This process produces a design specification
providing enough information to advance to the next
level of design. Criteria established at the beginning
of the effort determines the level of detail to be
achieved. Until the required detail is reached, the
design is continually decomposed and refined.

As in the domain model, reuse guidance is provided
to help the system developer tailor the design to the
specific needs of the system under development. The
domain designer creates a set of guidelines for using
the DSSA in a full scale software development
activity. These include a discussion of the rational
for the selection of a particular alternative, when to
use particular components, how/where these
components have been used previously, and any
lessons leamed.

24.5 Validate Architecture. To ensure

the DSSA created meets the domain model
requirements, domain constraints, and provides a
workable solution, the domain designers and
implementors must validate the DSSA. To do this,
alternative approaches exist:

1. Inspection - Domain technical experts
review the architecture and provide
input regarding the correctness, from
their perspective.

2. Simulation - The software characteristics
are used to produce a simulation model
focusing on measurable performance,

3. Prototype - A small demonstration
program is assembled to ensure that the
design can be successfully instantiated
by an application. Further lessons

learned and reuse guidance are captured
in this phase.

Example

This example demonstrates the construction of a
mission-specific (supply) DSSA. The data and
operations listed in Table 1 were grouped together
into distinct objects by a closer examination of their
content and purpose. In order to manage complexity,
the construction of the DSSA proceeded by:

1. Object identification, .
2, Object intcraction, and
3. Object structure identification.

The first two steps are illustrated by an abstract
structure chart (see ‘Figure 5). The third step is
illustrated with a concrete structure chart (scc Figure
6).

Object Identification - The first data item
(TRANSACTION) and the first four operations center
around the management of transaction information (a
REQUEST is one form of a transaction). This
suggests an elaboration of an abstract object
"TRANSACTION" as shown in Figure 5. The next
data item and the next four operations focus on
management of the ‘nventory, and can establish an
abstract object "L-VENTORY". Finally, the
remaining data item and operations manipulate the
catalog information used to order stock from the
supplier. These are grouped to form the abstract
object "CATALOG ".

Object Interaction - The establishment of the
interfaces with the external entities (the customer and
the supplier) reveal that the only two "visible" objects
are "TRANSACTION" and "CATALOG". The
"INVENTORY" object receives commands only after
the initial transactions are validated, and generates 1n
event to create a transaction if stock levels drop
below a preset point. This interface organization
allows for an orderly control of the inventory and
scparates the processing of two types of data
(inventory and transaction). The CATALOG object
does not need to interface to the other objects as it is
only accessed to update the catalog and to order

11th Annual National Conference on Ada Technology 1993

.

61

67

shipments of stock.

Object Structure Identification - At this stage,
the details of the objects, are identified to provide a
complete design descriptirn. The operations and data
that where grouped before to identify objects are now

represented along with any structural decomposition..

For example, Figure 6 shows the structure of the
three objects that include the operations and data
from the domain model. The INVENTORY object
not only has the Issue Stock, Receive Stock, and

‘Perform Inventory operations. but also a Check

Stock Quantities operation needed by
TRANSACTIONS to verify stock-on-hand before
filling a request. The Maintain Stockage Levels

‘operation is a concurrent process (in this instance an

Ada task) that compares the present stock inventory
with minimum sustainment levels and calls
TRANSACTION to reorder if the minimum is not
met. The Stock Quantities data is now decomposed
into the three data objects (Stock On-Hand, Stock
Due-in, and Stock Due-Out) that are created by

instantiating an object constructor (in this instance an

Ada type).

Figure 6 shows the calling connections for a scenario
where a customer submits a request, the stock is
available and is issued, and the action causes a stock
item to fall below a minimum level, prompting a
reorder.

Figure 6. Supp'y Object Decomposition

11th Annual National Conference on Ada Technology 1993

3.0 SYSTEMN INSTANTIATION
In order to implement a system with domain analysis
and design products as inputs, the specific
characteristics of a system are "overlaid" or
instantiated (informally) to the generic ten Llates. For
generic requirements, system-specifics are gathered
from business process improvement products (IDEFO
and 1X models), interviews with functional
proponents, and user/site input. The system
instantiation takes the form of
insertions/modifications of system-specific
information into the requirements template. For the
generic architectures, any system-specific design
features are added to (or updated to) the generic
design to satisfy implementation constraints and
system-specific requirements. The domain model and
generic architecture products will contain information
about reuse guidance, rationale, clternatives
considered and discarded, and lessons learned from
the systems' development and domain analysis efforts.

4.0 CONCLUSION
Domain analysis and design allow identification of
software components early in the development life-

cycle, including the planning stages. Orientation to a
design and to the common requirements of a domain

allows the components to be larger, more complex,

and more highly integrated than traditional reusable
components, These features can result in higher levels
of software reuse in the applications within the
domain of the architecture. These same features may
make a generic model and architecture less usable
outside of the application domain for which th.;
were created.,

In order to realize the savings required to meet
budgetary cutbacks, a systematic way of identifying
large-scale software reuse is necessary. Developing
and using generic requirements and des’ 7ns will make
the difference in moving a system out of the initial
planning stages into development and fielding.

AUTHORS

William (Will) Stewart is a member of the Reuse
Engineering technical staff at SofTech. He has 10
years experience in software engineering, including
work on Space Station Freedom and the Army
WWMCCS Information System (AWIS). He has
received degrees in both Computer Science and
Engineering from Old Dominion University. His

- interests include methods to support domain

engineering, knowledge engineering, and robotics.
Internet: wstewart@softech.com

William (Bill) Vitaletti is a member of the Reuse
Engineering technical staff at SofTech. He holds a
MS. in Computer Science and a B.S. in Business
Economics from the State University of New York at
Binghamton. His current interests focus on domain
analysis modelling and automated tools development
for use in the domain analysis arena. Intemnet:
wvitaletti@softech.com

U.S. Mail:
SofTech, Inc.

1600 North Beauregard St.
Aiexandria, VA 22311

REFERENCES

Vitaletti, William G., and Chhut, Ravinn, Domain Analysis Guidelines (Craft), for the DoD Software Reuse

Program (DISA/CIM), pp 1-1, 2-1, SofTech, Inc.

8 May 1992,

Chubin, Sheirie, DISA/CIM/XRE, Domain Analysis Workshop Proceeding, for the DoD Software Reuse

Initiative, pp WG1-4, 21-22 September 1992.

Tracz, Will, IBM Federal Sectof Division, "Domain Analysis Working Group Report - First International

Workshop on Software Reusability”, for ACM SIGSOFT, Software Engineering Notes, vol 17, no3, pp27-33.

July 1993.

11th Annual National Conference on Ada Technology 1993

i

68

10

11

12

13

14

15

16

17

18

19

Vnaletu, Wiiliam G., and Guerrieri, Emesto, SofTech, Inc., "Domain Analysis within the ISEC RAPID Center",
Eighth National Conference on Ada Technology, pp 1-5, Atlanta, GA, 5-8 March 90.

"The Army Strategic Software Reuse Plan", office of the Director of Information Systems for Command,
Control, Communications and Computers (ODISC4), 31 August 1992.

Bailin, S, "An Object-Oriented Requirements Specification Method”, Communications of the ACM, pp. 608-
623, May 1989.

Braun, C., "Domain Specific Software Architectures - Command and Control", Proceedings of the WISR ‘91 4th
Ammal Workshop on Software Reuse, 1991,

Bubr, R., Practical Visual Techniques in System Design with Applications to Ada, Prentice Hall, 1950.

Coad, P., Yourdon, E., Object Oriented Analysis, Yourdon Press, 1991.

Kaug, K., Cohen, S., Hess, J., Novak, W., and Peterson, A., Feature-Oriented Domain Analysis (FODA)
Feasibility Study, Technical Report CMU/SEI-90-TR-21, ESD-90-TR-222. Software Engmeenng Institute,
Camegie Mellon Umversny, November 1990,

Prieto-Diaz, R., "Domain Analysis for Reusability”, Proceedings of the Eleventh Annual International Computer
Software and Applications Conference (COMPSAC 87), pp. 23-29, Tokyo, Japan, October 7-9, 1987.

Quanrud, R,, Generic Archul'rec:un Study, Technical Report 3451-4-14/2, prepared for US. Army CECOM,
SofTech, Inc., January 1988,

McDonnell Douglas Missle Systems, Developing and using Ada Parts in Real-Time Embedded Applications,
CAMP-3, prepared for USAF Armament Laboratory, April 1990.

Gilroy, K., Comer, E., Grau, J., Mcrlet, P,, Impact of Domain Analysis on Reuse Methods, prepared for US.
Army CECOM, Software Productivity Soluuons, Inc., November 1989.

Bailin, S., "Towards a Case-Based Software Engineering Environment", Proceedings of the WISR 92 Sth Annual
Workshop on Software Reuse, Palo Alto, California, October 26-29, 1992.

PEO-STAMIS Domain Definition Report, prepared for the Army Reuse Center, Document No. 1213-65-210/3,
SofTech, Inc., September 1992, .

DISA CIM Technical Reference Model, Draft, 1992.

Vitaletti, William G., Stewart, William R., and Chhut, Ravinn, Domain Analysis Guidelines (Version 1), for
DoD Scftware Reuse Program (DISA/CIM), SofTech, Inc., December 1992,

Design/Coding Guidelines for Reusable Ada Software, prepared for DISA/CIM, Document No. 1222-01-210/9,
SofTech, Inc., November 1991,

ISEC Portakility Guidelines, prepared for the U.S. Army Information Systems Engineering Command, SofTech,
Inc., December 1985.

. 69 11th Annual National Conference on Ada Technology 1993

~ . . . ’

- BN V4 /

-

V
oy .
. E
5 .
~
N '
L
|
'Al
1

A PRACTICAL GUIDE FOR ADA REUSE

Robert Haddon Terry
Margaretha W. Price

MountainNet, Inc.
Morgantown, West Virginia

Alihough reuse is accepted as a means of improving
software quality and productivity, only a limited number of
organizations are taking its acceptance seriously. Our paper
discusses the processes involved in reuse impiementation. It

-relies upon the recorded achievements and lessons learned

from previous and current projects as the basis for its
recommendations. This practical guide includes a discus-
sion of reuse issues, actions, and benefits. With our proposed
approach, an organization can gain confidence through a
low-cost, modest reuse program, while developing valuable
reuse expertise. Findings are presented in terms of products,
which include information for initiating and managing a
reuse effort.

Reuse in the Life Cycle

Several experts recommend the implementation of re-
use throughout all phases of the software development life
cycle. Dr. Kyo C. Kang of the Software Engincering
Institute proposes refiring the life cycle model to include
reusc activities at each phase.! Dr, Charles McKay, aNASA
scientist, emphasizes the importance of developing, import-
ing, classifying and leveraging reusable components through-

“out the Space Station Program life cycle.?

Even though it may be apparent that reuse activities
should be included in all phases of the development life
cycle, economic constraints and managerial attitudes have
limited its implementation. We have, therefore, elected to
limit our scope of concentration to the code development
phase.

In the coding phase, visible benefits are more readily
identified. Reuse at this phase can easily be defited by the
ratio between DLOC (Developed Lines of Code) and RLOC
(Reused Lines of Code). The benefits of reuse are not so
immediately evident or measurable during the other life

11th Annual National Conference on Ada Technolcgy 1993 70

cycle phases. For instance, during the design and testing

‘phases, due to the artistic nature of the activities involved,

it is difficult to calculate time spent or saved.

Before we outline our recommended approaches, let us
first report on our investigztion of the current issues, expe-
riences encountered, and lessons learmned by other reuse
efforts.

Investigation Results

Questions Encountered

Selecting a practical, achievable reuse approach is
facilitated by a clear understanding of the issues relevant to
adoption and implementation. These issues and questions
include:

- Development Methodology - During which life cycle
phase, e.g., coding, design, testing, and/or documenta-
tion, should reuse approaches be applied to achieve maxi-
mum efficiency?

« Analysis Techniques - Which of the analysis technigues
produce intuitively clear and achicvable paradigins of a
practical reuse approach?

- Assessment Approaches - Which assessment approaches
best identily those reusable artifacts most relevant to a
given developer’s needs?

- Multiple Instances - How shoul® multiple instances of

" reusable artifacts be constructed?

- Intcgration - How best are the afrrementioned activities
integrated into the other life cycle phases?

= Presentation - Which presentatior methedologies, e.g.,
modeling and diagramming techniques, best suit a given

. developer’s needs?

- Testing - Which testing methods most adequately ensure
the integrity and viability of the approach selected?

-Management - How are policies regarding research, quality
control, and information dissemination defined and imple-
mented?

.

Practical Approaches

Certain basic steps and practices have been effective in
addressing and overcoming reuse implementation chal-

lenges. The following briefly describes proven, fundamen-

tal measures which support sound approaches.

- Investigate the systematic and limited use of existing reuse
successes. In particular, apply theories, which are just sets
of axioms, to activities, thereby utilizing the most current
actual advances,

- Setaclear distinction between small-, medium-, and largc-
-scale reuse opportunities.

- Provide the reuse effort with a comprehensive variety of

software development information.

- Effectively and definitively rely upon reuse successes to
maximize the reuse effort.

= Provide support for different development methodologies
at different stages within each model.

Recommendation; Reuse Expert (RE)

The above suggestions are certainly warranted and
needed, although they lack a means for implementation.
One solution is to create a new position called aReuse Expert

(RE).

Suggested qualifications and responsibilities which the
RE should attain over time:

-Bea full-time member of the development team, whose sole
responsibility is to the reuse effo.i itself.

- Be a senior staff member who is held in high regaid by the
development team and displaysa positive attitude towards
reuse. :

=Participate in the analysis, design, and coding phases of the
development process.

- Attend all team reviews and walk-through demonstrations
to facilitate constructive coramunication and to avoid
duplication of effort.

- Research, analyze, and report on reuse-related resources.

- Obtain trairing in areas relevant to his experiences.

- Maintain the common aad shared in-house software re-
positorics, monitoring access and growth,

- Avail himselfof and exploit all opportunities in training the
development staff in relevant reuse materials.

- Communicate reuse development needs to management
and gain expertise great encagh to warrant shifts in the
development paradigm.

- Expose his findings to the reuse community by publishing,
demonstrating, or attending curre... forums,

formation herin

We began by performing a thorough investigation of

possible candidates. - Quality controls included verification
and validation of sutficient source documentation. We then
attempted to identify and locate supporting material for the
list of chosen possibilities. The resulting materials were
analyzed and initial candidates identified using the dcﬁned
quahty measures,

We then created and issued an informal survey. The
survey included questions vegarding the current level of
reuse, the number and position of persons invelved, and the

- nature and instances of reliance upon repositories versus the

availability of COTS {Commercial-off-the-Shelf) compo-
nents.

We originally intended to target the survey to six or

more high-level managers or, at the very least, those
individuals most likely responsibie for a reuse endeavor.
Aftera series of frustrating contacts with voice mail systems,
answering machines, secretaries, andbeleaguered colleagues,

we concluded that access to this target audience was not only '

exhausting but difficult to obtain. However, those surveys
which were completed and returned were scrutinized to be
sure the answers provided could be verified. We then
analyzed the responses and selected three Ada software
development projects which not only represented the variety
of available development approaches but also displayed 1
penchant f~r reuse. Again, quality guidelines were estab-
lished and included such issues as size, direct contact with
membersintegral to the effort, and the receptiveness of these
individuals to incendiar « estions and comments.

Data Presentation and Analyﬂg
In order to preserve audic - bjectivity, we elected to

present the information anonys -wusly. Although we have
been granied permission v - v «w.e¢ full disclosure of our

- findings, particularly since most are currently and readily

available, we feel it serves no purpose to a:tach our sugges-
tions to any particular endeavor. Y/e are attempting to offer
solutions which could be used by any effort. Indeed, it is our
hope that these scenarios result in a better understanding of
reuse, its properties, and its acceptance.

Project A

General profile: A multiuser information system
encompassing an inventory control system with command
decision modules.

71 11th Annusl National Conference on Ada Technology 1993

o ot oo [T L - :
8 R T S A . .
i . . e . . \A) L EE
N \ s o . . .
i UNPPRT ORI . Lo et . .
! e Lo Lt
AT
S
‘

;e [L B R R i
. . ot . 1

St

Iiemographic data: The system consists of 300,000
LOZ (Lines of Code) ana tock approximately two years to
aevelop. Testing was slated for "anuary 1992, A total of 25
assigned software developers have been involved on a full
timebasis. There werealso more than five support personnel
and some outside contracting. The developers had different
roles including three system administrators, four communi-
cation specialists, two database administrators, one configu-
ration manager, and more than five teams of 2 to 3 applica-
tion developers. '

Reuse achievements:

- New development efforts have adopted their methodology,
standards and software architectures.

- A scarcity of off-the-shelf software required the develop-
naent of an Ada configuration management system which
will also be exported to other systems.

- The methodology hus been documented in a much needed
“Developer’s Guide”. The guide shows potential as an
organizational standard.

- Approximately 6,000 lines of locally written, reusable oode
(12% of the total lines) equals 30% of the system based on
the number of times they have been reused.

- A page formatting component was reused from the: ASR
(Ada Software Repository).

- CRACE Components were purchased and used, albeit not
extensively.

- Preliminary discussions have begun about their own in-

house repository.
Reuse lessons learned:

- Lack of tools. Very few commercially available tools had
been developed which appropriately fit their needs.

- Unanticipated tasks. Searches for reusable artifacts had to
be conducted, prices negotiated, and testing of the pro-
cured products had to be accomplished.

- Lack of resource knowledge. Greater emphasis should
have been placed upon searching Ada repositories for
specific software requirements and developing packages.

= Lack of component support. A support group for the
purchased reused components was created and later dis-
banded. The product was never made fully available.

- Program reviews were attempted to increase the amount of
information sharing, but they were discontinued because
of time and coordination constrainis.

- Unanticipated ramifications. By judicious integration of
the database, control files, and reusable packages, varying
field requirements and development modifications were
affected by minor system tuning.

Recommendations:

- The project should have retained one RE. 7
- The RE should have seen to the organization and produc-
' tivity of the program reviews.
- The RE should have coordinated and managed reuse
component acquisition and purchase.
- The RE should have constructed an in-house repository
beyond the initial and immediate needs of the current
development project.
- The RE should have been responsible for repository
searches and retrievals as encountered.

Project B

General profile: A financial system which is an
application redesign that services an accounting and finance
center. .

Demographic data: The system consists of 2.75 mil-
lion LOC with a total development time of 4.5 years. Of this
total, approximately two years were spent ¢coding. The
system was delivered to the customer after development and
qualification testing was completed. A total of 90 people,
including 52 coders, were directly involved at the peak
period. Responsibilities were divided among management,
database, senior analyst, system support, advanced technol-
ogy, application, design, ard application generatcr teams.

Reuse acbievements:

- Portions of the design were isolated into packages. This
permitted a physical decomposition of code rather than
‘decomposition along functional lines.

- Timing issues were encapsulated in a single mainline
generic package for reasons of consistency. Over time,
advantages were found by having several mainline ge-
neric naosoges, A benefit of this approach was that every
funcu. 2" «ubsystem had the same “look and fecl”.

- Afollgw oo,
used the io00ls created and reduced its cost by one-half.

= Each of the more than 2,500 data items was defined in a
database. Centralized management of data item typing
enforced an uncommon level of consistency throughout
the code. _

- All interactive programs bad, by definition, exactly one
screen. A screen painting tool was used to generate the
code necessary for the screen and its system mapping
support.

- Specifications were used as input into a generator which
generated bodies. A full 76% of the 2.4 million lines of
code were generated,

11th Annual National Conference on Ada Technology 1993

inventory project, about one-third the size,

72

« Code sharing was supported by creating, distributing and
using common and shared bhranies. Walk through pro.
vided opportunitics to share the knowlesdge of btaesees’
contents : A

"« Common code (¢ g, 8 men package) and shared code
(e g . date operators) were maintained and made aval.
»k . .

Reuse lessons earned:

- Lack of communication Communication between library
users was difficult to maintain and facilitate |t was
pa:tiatly alleviated by an apphicanon leader who assumed
manitoring responaibilitisg

. Limited use of resources Use of the onch components and
ASR war minimal since the developers feared their intro-
duction would result in configuration management prob-
lema

. Lack of coordination The powertul senior design tam did.

ot communicate the properties of rense effectively
- Unanticipated ranufications Later in the developmient,

project reuse efforts were consistently impeded by data-

base difficulties

- Lack of integration Walk-throughs hecame internal team
meetings while information sharing was limited to segre-
pated groups There was very little rense between groups
st the apphication level

- Lack of in-house repasitory The effort lacked an in-house
repository, which conild have also served as 8 storage nhit
for the specifications used with the generator

Recommendationn:
« The project should have retained two RF's

- The Rl should have made intra tearm communication &
priority and should have been present st vach walk-

hould have maintained, monitored, and dissemi-
cominon and sharad Library contents
« The REs shoutd have boen ind tuded 10 the decision making

Genersl profile. \n advanced automated system for
avistion. The system ia presently broken into 16 logical

groups, which are o prised of ahout 48 Jarge dintritnited

prooesscs

 Demngraphie date: The findd prodiet will resuire an
estimated 1 Ymsthion Adal 00 phacewme KIVIAL € and
Aszcmbler softwary nuxed with COTS The metom s
artently under development ant has 8 development e
cycle estimated 10 lagt 2 vears with a maintenance “phaee”

_ greater than Miyears Thore are pver |0 cmplovers from

multiple companies working on the propxt The sursevey
company's involsement incbndes 230 progle whi work e
approvimatety 6% groups one of wh b a8 ruw working
group (W0 that has 13 full-ime and 10 pact o parter

pants.
Reuse arhievements:

« An md hoo working group wat set up az s tash Forve of
intorested volumeers, 1 determisng how the prowt onuld
whe advantage of teuse technology

« The working group evebed into an offioal organirmeo
which provides 8 projact wide coonitication of the reus
effont

« The RWG defined 8 rease prov cea and extablinhed rogpuon
sibitities for eac h of 1ts meme oy, whe b are do nmestted
in the project’s development standards :

s The RWG defined roles and responsibiities for softnare
authors, reusers and reuse ahvocates Theee i fiste tlems
which asaure the guabity of the teumr products, priv exses,
compnents, and peaple

- Using a liteeary wanant (e hiigue on the 1n house compn
nents, the RWG performed an abbreviated domais snash
sit butiatly, 0% different clases were whentified that
could be potentiatly (re used by two or mare developar sl
groneps within the projedct

«The RWG ttacked the developenent uwe snd hanges of the
reusable components They sdvertiannd the compnnets
nind Dheit “reviewn’ o hedules

- Fach development group 18 Vs hargd” for rease by

‘taking ot the coat of the Reuse Group Hom em b of the
development groups' budgets 11 s hopedd they would take
advantage of what they are paving fiv

« The sharing of software (up 10 ¥ timwea 1n one (ase) Gorved
the sharing of infrrmation tetween Giflerent development
groups, whic b im reased the undeistanding of the problem
domain and ratsed each party ipants’ levels of expertine

« The RWO scarched various foruma and repositones (e g,
in-howse reposttories, AdaNET, COSMIC, GRACT, and
STARS)

« The RWG recommended “rewnida”™ and other incentives
for participation in component reuse

i g K i

i
e
i

- The HWG mweinhers attenbad ol progect reviewsand wought
e opgevtnmities fise reues

» The RN G tained peopie atamt the rease m 11y 1ties ot thete
rease center, they atso prepared and compiled sirveys
froms weery

Reust brzvoma learwed:
- The “traduional” sflaar development process must be

mandilied to incerporate the reuse effont
-Hwasdiscoversd that more gegnndanty intracking data was

oeeded Oignnally they ondy tracked reuse at the “com-

ponent” level

P wment standardehave fohe taslored for reuse since they
tpecatly repure snappropriate mformanion and fornats

+ There meeds to be more antomation of the process

- Reuse must be conendored early in the hfe (vole, at the
e icatin, o gven the prn;wml gtage

- Areas whery potential rensabide components are identified
would need extea funding to develop the (components

Resommendatinng:

- The RWEG shoubd contenue mabing progressive steps in the
revar e fforg

« The RWG shondd sub divoade ‘hese effonsin order to reflect
their concerns with the propoas), design, development,
and mamntenance of the privhie

- The maexion of the RWG chowid Purther be a comprehensive

reviwe effort. and ot be assoviated wih any partioular

attempd

Farticular reles within eah sub group need to be identified
and emphasized (e g, RE, Domain Analysis, Domain
bapert ot)

- Theiveflort could include (mashe should) at least four RE'x

C Pretect
How to Start A Reuse Program

Misconepiions regarding reuse have hampered scoep-
tance Far oo many developers adhere to the myth that rease
16 & costly and geoerally ndy buzinees Pragedts are quite
often overty ambitions with il defined gonls and inflated
expes tationn However if the effort is modestly undertakon
sndd hased upon o fow e, concentrated, and clearty stated
mission, the overall costs will be negligible Dalance those
conts apainst the practival experiences learned, and the
arguments againgt reuse efforty are lesa competiing

Sebecting and supporting a gualified, enthusiastic, and
rexponnble team leader are esseatial to any effort For our
putposes, this person is designated the RE Removing the
exert from an existing team and positsoning him in this new

lead role can be viewed as aninitial imveatment The munber
of renae € v ris meessary must he measured apaingt the gaf?
arwd progect size The aumber of HEe oun alse grom
recponse to project growth and maturity For most proedest
projeote, one fdl-time, committed exypentiesuMoent Thie
comminment muct be total sinee the responsthibieg .
volved 1 reuwe demand conttant evaluation, intersention,
and contrel Further qualifications are detailed in folloming
soutong

Once appointed, the reuse expert will then be tegoired
to evahuate in house packagey and components We kave
sdopted the term “ohiocts® to represent packapee andor
compnnents Commpanics with extencive obedt Lolbntiony
should make juds s s tectione finding obysctethat mar b
the effort’s goal and mission Smafler firms who have not
peduced vast amounts of code can Chonke o expefiment
with af! the ohjects collected

ldeally, a comprehensive domain gnalyus wordd he
perforoed at thic point Our experience indiates that an
"abbreviated dos @in analysic”, performed by the BRI 1
more practical and usefid

This entails uzing a form of the Wierary warrant i k-
mgue emploved by hibrary scieatists In this teehaupae,
existing ohie ts are grouped according to thew commonals.
ties

A brief example

Firm XY7 has the following scven objects
- simple ediror
< text formatter package
- random number generator
- areay manipulation
« spell checher
» binary tree functions
- matriv functions

Perfornung an sbbreviated analysis could result i bt
ia certainty not linvited to, the following grouping

Group, Text Manipulation
Simple editor

Text formatter package
Spell checker

Crpup, Mathematical Rowtines
Random pumbcr gencrator
Matnix functions

1
]

Group. Abstract Data Typos
Array manipsitation
Binary tree functions

ﬂwiouh there sre many methods of analyzing and
classifving obyects using a variety of nomenciatures.

Computar Science Corporation's Reuse Working
Group. for example, did something they called 2 “mini
domain analysis™ which was successful in identifying
commn classes and fa Hitating communication

With the existing ohjects grouped, the reuse expert can
then discuas their relevance with developers who will be
encournged 10 rate the necessity of esch object to their
current project Developers will alw be asked to produce
o list of ohjects for possible acquisition or development.

© This process i vital fo! building confidence in the overall

reuse effort.

Developers' feedhack will provide the reuse expert
with two lists of obsjects.
1 in-house objocts deemed necessary to the project at hand
2 "ia demand” objocts which must be located, and re-
trieved, purchased of developed

If there exist in-house obsjects which developers thin®
they nenid, they can just make 8 cofry and reuse it. Other-
wise, the developer meets with the RIL to decide whethera
form of the chject is on the "in demand”® list and whether
the demand is grest enough to warmnt developing it as a
reusahle objoct st this time. If it is appropriste to develop
it a8 & reusable object, the RE will organize and coordinate
the offort with the other potential users of the object. The
coordination would include identifying the common re-
quirements and deciding on which developer could handle
the axtra work load

Management needs to encourage the development of
resaable objects by allotiing more time for the effort.
Deveiopers need to share the responaibility of cresting
reusable objects.

Broduct 2;
RE Beiponsibilities and Activitics
Qualifications of the ccndidate:

Candidstes need to be experiencad in the development
prooess. Jdeally, they thould also be students of the reuse

effort They must posacss the abilities to offer and promote

pmcednm shifts in the organization's developmental pare-
digm. Fina'y, they must be pmmndto manage and enlarge
wpon lht mm: effort

Beginner
Focus. Research and analyze what has been done, focus

sttention towards what is needed Complete the follow-
ing recommended activities until satisfied of success. -

Axtivities:

« Gather and maintain information about the in-house
software domain.

+ Gather and analyze infonnation concerning the reuse
parsdigm shifts
« Contact and interact with any/all po(:nm.! componem
sources for your domain of interest (¢ g , repositorics or
commercial components). '

« Perform an shbreviated domain analysis of in-house arti-
facts

«Locate and enroll in one or more reuse workshopa/tutorials

- Gather and analyze information shout related mibjoct areas
(e g. Domain Analysis, Designing for Reuse, Library
Sciences, efc.) as they are encountered and become rel-
#vant 0 your effort,

« Attend and participate in any/sll program reviews, design
reviews, etc.

« Reproduce and distribute all relevant products (e g, cata-
log of in-house compoenents, report of external compo-
nents, etc).

Intermedinte . .

Focur: Continue efforts in researching, analyzing,

doce enting, and reporting. Begia introducing reuse as
an slternative to development, focus on easily understood
and worthwhile attempts.

Activith 2

«Preparc for workshopa/tutorials, read relevant puntications

of the speakiers of the subject Communicate any questions
and spocial interests with the spcakers (allowing them
time 10 address the questions in the sesaion)

» Attend workshops/tutorials, obtain and briefly review afl
the providod material. Ask questions as (hey arise, offer
sugpestions when solicited. Review and prepare for each
session (e g., during breaks or overnight stays).

R i A

- Create 8 summary report of lessons learncd from the

workshopstutorials Include idcas which mightbe imple-
mented in your company

- Continue attending and pasticipating (more actively) inin-
house program reviews Seck out and scloct one or more
opportunitics for reuse.

« Keep accurate records on the wlocted reuse opportunities
Track hours, LOC, and other data which can be used to
evaluate the reuse effort. Record all data in a spreadsheet
‘package

» Propose the purchases of comnercial components, if their
contents fulfill your dowrain noeds Include the compo-
nents in the in-house Library and distribute information
ahout them to potential users

- Reiterate the abbreviated domain analvsis, to provide finer
granulanty snd to identify obvious omissions

« Create a taxonomy (listing) and an arc ntecture (modcl) of
the in-house hbrary

Expert

Focus: Continue with the carry over activities of the
priot levels Propose instances where reuse should ocour.
Use obtained data to statistically demaonstrate the value of
reuse

Actlvities:

Conduct reuse training when appropriate and nceded The
training shovld be shont and directod vowards the sudience’s
ahulities

« Provide manage meni waith a rense activity report. Include
statistics that demonstrate the value of the effort. Include
paradigm shifis which waild improve the process.

- Create a reusz working group (possibly from veluntecrs)
who have the qualifications nceded to improve upon the
reusc cffort,

« Perferm an abbreviated domain analysis of the external
resources proviously identified. Prepare a taxonomy (in-
clude price information) and an architecture of the oncs
which are part of your in-house domain.

- Propose and solicit places where reuse is needed from the
working group members. Propare a report which demaon-
strates the potential value of your suggestions Deliverthe
report to those in charge of making such decisions.

- Attempt to publish your expericnoes and findings.

Recommendstion and Consideration For
Management

Our paper thus far has introduced a basic rense program
involving minimal start-up costs This basic introduction
can and should be expanded upon to achieve mavimam
bencfits. This expansion will be made possible by an
increased level of expertise and cffort maturity. Moving the
effort forward is a natural progression forboth the RE and the
project itself. Figure 1 illustrates this point by combining the
steps outlined in the Section , “How to Start A Reuse
Program”, and the foliowing Section which tracks the RE's
expanding level of expertise. The figure also provides cost
and time estimates for each iteration necessary to achieving
the ultimate goal.

The time consumed by increased reuse activities de-
pends upon a variety of factors which impact project deci-
sions. Renown reuse and domain experts such as Ruben
Pricto-Diaz support the idea of progressive reuse, ¢ g, rouse
achieved through a serics of stages based upon undertying

“

ACTIVITIES ave, lcon Jime |
AFTR NS A el A ST ey " bl
P A el v rramEnd o ‘u‘:.thl o
ORI R ’} ALY B9 ')‘ L 9 FRARh ’} prvam™G prrcunaws

axycooRs N
...
: ~ (*
-y, [Anessvinnd P(uouu Y '.r:' I 1
aws g oot sormena PR AATA N.ots 1
o [0 mnvee =] e <3 | pazeew [[orvncome oy
. "B .

c K oM A AW ooy .
mi o | mvm oA win | o fFiadme o [B ve [omr
rmane || svausan "}" Ll ‘} prasew |29 lorunamg roms.

CAROND
)
FICURE1 REUSE FROGRAM STAGES
P tabh b § Metloamnat Ml i e 8. -.ﬂt_,|v‘au ::QQ

sucoess at each level 4 We concur and support this conten-

tion graphically in Figure 1. Note that allowances are made -

for both progressive and horizontal iterations. Horizontal
iterations are performed when unsatis{actory results occur at
any given level,

~ Figure 1 also shows that cost allowances increase as the
project matures. This is typical of reuse efforts and, as noted
by Pricto-Diaz, most projects will experience fluctuating

costs before stabilizing. Figure 2 represents typical cost
behavior.*

estimated
cont

st ind 3nrd ath
mplementation ¥me-years

FIUTRE 2 - Bupected Cost Behavior for o Typical Revse Progrem

The most important factor influencing the success or
failure of a reuse effort is undoubtedly the RE, his commit-
ment and expertise. Management must enforce, if neces-
sary, the total involvement of the RE in all aspects of the
software development life cycle. The number of REs in-
volved in the project depends upon the nature and level of the
project itself. Any reuse effort will be shortchanged if
~ management underplays the importance of this role.

As reuse is integrated further into the development

~ process, the number 1nd involvement of REs increase ac-~

cordingly. The RE's role should expand in all other phases
of the software development life cycle.

Management should support the reuse effort by reward-
ing the development team with creative incentives. Devel-
opers who successfully reuse code or create reusable code
should receive management recognition or tangible re-
wards. Management should make available articles, papers,
and sny current information on the subjects of reuse, and
should encourage their utilization. One-hour, weekly status

mertings should be scheduled to facilitate the information
sharing on the reuse effort and its impact: on current

projects.

Available Resources

The following is a representative sampling of available
resources. It is meant to serve as a good starting point for
beginners and as template for the data structure.

‘File: Commercial Components

Record Name: Booch Components

Vendor: Rational

2171 South Parfet Court

Lakewood, CO

Phone: (303) 986-2405

Contact: Grady Booch

Abstract: Consists of several dozen domain independent
data structures and tools, each with multiple implementa-
tions so that a client can select the representadon that
provides the most suitab’s time and space characteristics.
Although written in Ada, Versions are planned for C¥
and SmallTalk. Over 300 sites in the US, Europe, and
Pacific Rim.

Vendor Profile; Rational is recognized as the world's
leading supplier of Ada products and services. Grady
Booch is Rational's director of object-oricnted product
development as well as the developer of the Booch
Methodology and Booch Cotmponents.

Record Name: The GRACE (Generic Reusable Ada
Components for Engineering)

Vendor: EVB Software Engineering, Inc.

3303 Spectrum Drive

Frederick, MD 21701 ‘

Phone: (800) 695-1818

Fax: (301) 695-7734 -7

Contact: Jennifer Jaynes Lot

Abstract: Consists of 273 distinct components otgamnd
into 23 families of abstractions which tota! more than

- 320,000 lines of Ada Code. GRACE components and the

18,000 pages of documentation are provided on magnetic
media.

Vendor Profile: EVB provides consulting services to
asaist management and technical teams in the ahsorption
and utilization of software engincering technology. Also
provides an extensive Ada Software engincering training
curriculum, products that enable and enhance Ada
Software development.’

File: Informatioa Services

Record Name: Ada 1C (Ada Information Clearinghouse)
Address: 4600 Forbes Boulevard

Lanham, MD 20706-4320

Phone: (800) AdalC-11

Fax: (703) 685-7019

Contact: Susan Carlson

Internet: ajpo.sci.cmu.edu _

Abstract: Sponsored by the Ada Joint Program Office
(ATPO), the AdalC Bulletin Board makes information on
the Ada language available to the public. Samg.e flyer
topics include: “Ada Source Code, Reusable Components
and Software Repositories”, "Costing, Sizing and Produc-
tivity Tools"”, and "Ada Training Videotapes Available
through National Audiovisual Center.” The rcad.me file
provides a complete listing of files available for down-
loading or transferring.

Record Name: archie

Internet: quichc.cs.mcgill.ca

Login: archic

Password: (name needed)

Contact: The "Archie Group” of McGill University

Bill Heelan (wheelani@cs. megill ca)

Peter Deutsch (peter@ce.tacgill.ca)

Alan Emtage (bajan@cs.mcgill.ca)

Abstract: archie is an interface for use with anonymous
FTP resources. It is a system which allows you to rapidly
locate the various public domain programs stored on the
hundreds of sitcs across the internet,

File: Repositories

Record Name: Army Reuse Center

Address: Army Reuse Center

USAISSDCW, Attention: ASQB-IWS-R, STOP H-4

Fort Belvoir, VA 22060-5456

Telephone: Clicnt Services (703) 285-6272 or DSN 356-
6272

Roy Lloyd (Newslctter Editor) (703) 285-9071 or DSN 336~
9071

Abstract: formerly known as RAPID. Coniains 1,401

Reusable Software Components (R 3Cs) totaling over

955,000 LOC. Currcut populsitior strategy for FY93-

FY93 will focus on identifics.ion, wvaluation and certifi-

cation of reusable components,

Record Name: AdaNet
Address: MountainNet, Inc.
2703 Cranberry Square
Morgantown, WV 26503

Telephone: Help Desk (800)4 . U8
Internct: adanct.wvnet.edu.
SprinNet: 304130

Abstract: AdaNet repository isace oncent of the
Repository Board Software Engince. . : UBSE) program,

The program provides a possible doms .euse library
with software from the ASR, Jet Propuls. »o Lab (NASA/

_JPL), DOD/STARS, and Education Institutions.

1sion

Our study has communicated, managed and qualified
the reuse effort. In near retrospect, it has succeeded as an
initial analysis of the reuse domain. We contend that it is
worthwhile reading for individuals, groups, and organiza-
tions involved in the ruuse effort. We are comfortablein the
thought, that our products might provide usable information
in future attempts. |

Acknowledgments

The assistance of the many conmbmors to this study
is greatly appreciated. The authors wish to thank LindaK.
Braun, Debra Burns, Joyce Coombs, Karen Fleming, Kathy
Uphold, LouAnn Welton and Debbic Zéwe for theirvaluable
assistance in collecting data and editing this paper. We wlso

* want to acknowledge the AdaNET project and MountainNet

Inc. for their support and encouragement.
i
B:&rmcq'

[1) Kyo C. Kang, "A Reuse-Based Soﬂwarc Development
Meuthodology,” Proceedings of lhd Workshop on Soft-
ware Reusability and an!ainablmy pp.194-196,
October 1987. \

[2) Charles McKay, "Final chon on "A Study to Identify
Tools Needed to Extend the Minimal Toolset of the Ada
Programming Support Environment (MAPSE) to Sup-
port the Life Cycle of Large, Complex, Non-Stnp,
Distributed Systems Such As the Space Station Pro-
gram,” 1990,

(3} Gregory M. Bowen, "An Organized, Deveted, Project-
Wide Reuse Effort," Ada Letters, pr. 43-52, January/
February 1992,

[4] Ruben Pricto-Diaz, "Making Software Reuse Work: An

Implementation Model," ACM SIGSOFT Software
Enginecring Notes, Vol. 16 no. 3, pp. 61-68, July 1991,

[

11th Annual Natinnal Conferencea on Ada Technologv 1993

78

79

Blograrhics

Margiretha W, Price; MountainNet, Inc., 2705 Cran-
beiry Square, Morgantown, WV, 26505, She is a Software
Engineer/Librarian in MountainNet, Inc., working on the
NASA/AJaNET project. She recetved BS (1990) and MS
(1992) degrees in Computer Science from West Virginia
University, Morgantown, West Virginia.

Robert Haddoa Terry, M. s:ntainNet, Inc., 2703 Cran-
berry Square, Morgantown, WYV, 26305. He is a Software
Engineer/Librarian in MountainNet, Inc., currently work-
ingonthe NASA/AdaNEET project. HereceivedaBA (1984)
degree in Mathematics from West Liberty State College,
West Liberty, West Virginia, and a MS (1988) degree in
Computer Science, from West Virginia University,
Morgantown, West Virginia.

11th Annual National Conference on Ade Technology 1993

Engineering Environments & Emerging Standards

Moderator: Frank Belz, TRW

\,
T e

Panellsts:

’ 11th Annual National Conference on Ada Technology 1993 80

Ada9X

Moderator: Chris Anderson, US Air Force

Panelists:

81 11th Annual National Conference on Ads Technology 1993

Zn BN el) Em em 3

Reuse Education

Moderatoi: Rose Armstrong, DSD Laboratorics

Panelists:

Dr. Dave Eichmann, University of Houston, Clear Lake
Dr. Charles McKay, University of Houston, Clear Lake
Bob Saisi, DSD Laboratcries

Linda Saus, EWA

Dr. Francis Van Scoy

11th Annual National Conference on Ada Technology 1993

—— el

82

RN

AdaSAGE

Moderator: Joan McGarity, COMNAVCOMTECCOM

Panelists: HMHoward Stewart, EG & G {daho Inc.
-~ David Cuneo, Naval Computer & Telecommunications
Capt. Jerry Depasquale, US Marine Corps
Am Hollom, Standard Systems Center
John Taylor, Software Development Center, US Army

83 11th Annual National Conference on Ada Technology 1993

w s o ooaT TR e e e e et

u_'.-.-—"

- e L . c . e e e © e eh e
.. - . T - e - L A B - B I N e S e s DT IR Lo T o
PR A A I A A ./. e e T B N R) (R R A

D R N g S T A AL ST e Selal s e e ~e s ’ L el
,'{¢ I Y S R L Y e e A ST P s T RN A P LU
rrieal T R . NN 2 AR S G PR S . et . T EE7 N :

e e T * B B e i LR A I R o N S RN R R Ty AT ; A

[

-

]
rl

. . N TToTTTT
L . » N
. . e \ 3 \
.l e AN N . . .
P et . : N
s PR .
T . .

RREEN

P
T e ...

Government Training for Ada & Software Engineering

Moderator: Capt. David A. Cook, US Alr Force Academy

Panelists:

J1th Annual National Conference on Ada Technology 1993

‘o - [
" .
. S
4 PR —- . - - e
S L, . - _g'*‘,_
} A - - :

84

L - Software Reuse: The Next Steps
Moderator: James Hess, HQ, Department of the Army
Panelists: Phillip L. Koltun, Harris Corporation

Robert Lencewicz, HQ, Electronics Systems Center

Donald Reifer, RCI -
'Roger Willlams, Software Productivity Consortium

85 11th Annual National Conference on Ada Technology 1993

L
. - R PR Lol : R sy g .- I .. Se L

USING Apa FOR A TEAM BASED SOFTWARE ENGINEERING APPROACH TO CS1 ,

AKHTAR LODGHER & JAMES HOOPER

Department of Computer Science and Software Development
Marshall University
- Huntington, WV - 25755
Phone: (304)-696-2695 Fax: (304)-696-4646
Internet: CISCO5S@marshall. wvret.edu

In the past year, the Computer Science department
at Marshall University has revised the Bachelor’s
degree program, and given a very strong emphasis
to software engineering throughout the entire
curriculum.! The department decided to use Ada as
the standard programming language for the first few
courses. In later courses, exposure to other
languages such as C and C+ + is also given. The
program has two capstone courses, taken in the last
two semesi...., where a major team project is
designed and implemented. Hunce the need for
emphasizing software engineering principles, as well
as getting students used to programming in teams
from the very first computer science course was
strongly felt. In this paper, the author prese.ts the
syllabus and a method of executing the syllabua of
the CS1 course satisfying the above needs. Software
engineering principles are introduced early on, and
after an initial boot-strapping period, the
programming projects are done in teams. ihe Ada
programming language is used.

Introduction

CS1 is taught as a 4 semester-hour course in a 16

- week semester. The students attend three hours of

lecture a week and two hours of closed lab.
Concepts introduced in the class are reinforced in a
closed lab setting. An open lab is also available for
students to complete their lab exercises and
programming projects. The Ada compiler on a
VAX/VMS system is used. Students are allowed to

use PC based compiler environments for program
development. However all work is graded only on
the VAX. :

Syllabus

The objective of this course is to develop problem
analysis and algorithm development skills. Topics
covered in this course include introduction to the
entire life cycle of software development, intro-
duction to the use of modular design in the problem
solving process, procedural abstraction, decision
structures, iteration structures, basic data types,
array and record structures, abstract data types, use

. of generic code, and introduction to dynamic

structures. Problems that enhance the characteristics
of each concept/structure are used. The problem
solving process is emphasized over language
implementation. An example of this principle for
illustrating the looping process is: "Let us study this
problem (which reguires a loop construct) and
develop an algorithm for its solution” rather than
"These are the looping constructs available in this
language. Let us see the kinds of problems that can
be solved using these constructs”.

The solution process of these problems is studied
strictly from a software engineering perspective --
conducting a requirements specification and analysis,
performing a modular top-down design, development
of module specifications, adherence of code to
design. From the very first class, ti.> students are
told to perceive themselves as software engineers

11th Annual National Conference on Ada Technology 1993

86

and designers, not programmers.

A team approach is used for programming
assignments - two students per team. One person of
the team dJoes the design and the other person
develops the code based on the design. For the next
assignment, the roles are switched. This approach
forces the designer to conduct a proper analysis and
dzsign. The "coder” has to follow the design,
making only necessary changes, if required.

Approach
The "hands on” approzch

. The amount of material covered in the class is quite

large. To ensure that enough exposure is given to

each topic, a "hands on" approach to instruction is
used. Programs which exhibit the characteristics of
a particular concept or structure are made available
to the students. These programs are displayed,
explained, and executed in the classroom, on a
computer using the overhead video projector. Unlike
the traditional "chalk-and-talk” approach, this
approach not only shows the syntax of the structure,
but also shows how the structure is used in the
context of a larger solution process. Minor
variations and nuances of the structure are also
explained. ’ :

Another important advantage of this approach is to
show the possible incorrect ways of using the
structure. When a student starts using a new
structure, the chances of him or her using it
incorrectly are high. By using incorrectly formed
structures (both syntacticaly and semantically
incorrect), the error messages generated are shown.
The mechanism of using the error messages to trace
the error in the structure can be demonstrated.

Class notes in electronic form, as well as all
classroom demonstration programs are made
available to the students (on a mainframe) before the
class. The students are encouraged to bring a
printout of the notes and the programs to the
classroom. This allows them to spend time listening
and participating in the classroom discussion and not
be bogged down by the task of taking notes.

Other advantages of the hands on approach inci
increase in student participation (answering "wha
questions), increase in understandability z «d incr.
in programming confidence. However, this apprc
places a tremendous burden on the instructor.

development and preparation of pedagog

examples takes a lot of time. Instruction mater .

associated with text books are not available
electronic form. Such material must either
scanned or typed in and fine-tuned depending u
the audience.
I ntents and weekl ic

Table 1 shows the classroom topics, the assignt
anc lab topics on a weekly basis. It is assumed
the student has little or no knowledge of
operating system. However, it has been found f
past experience that students who have had
introductory course on computers in high schoo

 more patient and quicker in learning the

operating system.

The first two weeks introduce the entire system
cycle of software development. A top-down anal
and design methodology is discussed next.
process of converting a problem statement
requirements specifications, analysis and design
simple problems is explained. Currently the anal
is done using data flow diagrams (DFD’s) apA
design using structure charts. A design man
which explains this process in a step by step fasl
is made available. The issue of using object-oriel
design is under consideration.

The use of functions, procedures and package
introduced earlv on, in the context of mod
design. ANl the intricacies of procedures
packages are not covered at this point. Only
concent and their usage in simple contexts
covered. The branching and looping constructs
covered next.

Exception handling and the more detailed use
functions and procedures are then explained. -

concept of austract data types is introduced. '
~array and record structures are covered n

Examples of the use of array and records

87 11th Annual National Conference on Ada Technology 1993

SSPRX3 Alojeaoqe] pue uInIuisse ‘H1do) WOoISSEP Jo IpIuds m_a8>>, ‘1 9qeL

SUOROUN] PU® SANPIOOI] -

(suondeoxa) Surpuey Jouy -

. 834y Je0j PUE J¥[E0S JO SNNQUY - (se3myoed ‘suondsoxg) v wes, nopuey - SUONOUN) PUE SANPIC0IA 0} SINAURIGJ -
v ssnosiq - . : Vv ssnosi(- d4) woyy “rereds jo sanque ‘sadk) paresawnug -

BAV1 KR EETN

sdoor] Jo 9s) - (sdoo] pue sampsoasg) py Wea], INOPURY - sdoo] pasoN ‘doo] HTIHM ‘doo] YO -

¥ JO UGONIXI MOTS ‘g sSndsi(] - snp 51 gv jo weiloud ‘onp st gV jo udisoq - LIXT - dJOOT ‘sondpedal jo asy) -

SJUXONES JSVD PO HSTI-NTHL-A] Jo 950} -
£V JO UORNAXI MOYs ‘TY SSMOSI(] -

onp st Zy jo uraidosd ‘onp si 7y jo uSisa(g -

(3umpoueig) gy Inopus - RIS SV “WRuAn®S ASTI-NIHL-AI -

Suygouriq jo s1deonoo ‘suoissudxe wespoog -

. 9gvi 9 Ad9Mm

3a33nqep ‘suresBoud 3mppng - (3omyeuioj O/]) TV IMOpUSY - sodwyoed pue sampesosd
TV JO TOUNIX? MOYS ‘| $snosi(] - onp s1 1y jo wesZoud ‘onp st | jc udise(q - ‘suonouny Jo 9sn oY) 0) UORINPONT] ~
Tavl , EREENY
sada3 ‘sajquLrea ‘sjumisuc) -
v 3unremioj /] ‘sodfy wivp Jeeos -
30 wor.9x3 moys ‘swnidosd wpy opdims uny - (weidoad spduns) §y mopoeyy - so8wn3uv] saneredunt 03 vononponuy -
_— VEV] EREe
mdino ‘jndm ‘3,q4q ‘sawiBosd epy odung - SO monns ‘s, 3uimesp ‘ulisop umop dog, -
tdvl . EENY

© SONUEILIS

$9[Y [oyeq ‘J01pe jo os5() -
JEXTTOIIALS PPy ‘ponunuoo uinsds JuneiadQ -

 “xmuds ‘sofenSue] [PA9-USIY Ju MItAIIAQ -
3uajos wapqoud rruonemdios 03 uononponuj -

SONSUORIEYS YIOMIIT ‘umgonns a1 - 9040 9jrT 33uyg animyos -
msds Sunesado oy 0) BoRonpoORy] - uiajos wolqosd 03 BoRonpoany] -
XM JO S[ppiu onp sumidary
¥3om JO pu? 9up §1 Jom KIoresoqe] ¥ jo 3utuuidaq onp susiseq
Lopoqey Huumrssy sdog, sse)

8§

11th Annual National Conference on Ada Technology 1993

panuguee s iy Aqe],

. pennnuod sad4} sso0oy - .

gy ssnosiq - Jnp 51 gy wwBoud ‘onp st gy Jo 1@1sa(- MINY -

. (33d4) $3300Y) so[quLrea omueuLp jo 9sq) - .
8Y JO UOONXIYS moYs ‘LY sEnosi(] - onp st Lv wriBoud ‘onp 81 Ly jo uBisay - - Pponunuod s3d4) ss300y -
BT av1 v . - EAPERTY
oUW - (s2dfy s5200Y) gy wres], jnopuey - sad) ssa00% 0) omyuy -
Ly ssnosiqg - LV sstisyqg - PONUNUOS SOLIUIL) -
A\ HAREERY
 $ou0usd ‘saBipong - (suondaoxs ‘souwmOD) LV Wea |, nopury - VAR -
LV JO UOnnISX? Mofs ‘gy ssuosi(- onp 81 gy wwBoid ‘onp s gy Jo ulsa(] - suondaoxo Surssed *so3eyoed uo ssopy -
%gﬂﬂc—ﬂoﬂﬂuﬁﬂ.go , SPIOAT JUNLIBA -
9V ssnosig - . 9V ssasIq - SPIOOA [¥OIYIIRIANY ‘SPIOIA JO I8() -

sAeire [PUOISTROTP-N[NI ‘s{elry -
9V moqs ‘Cy ssnosi(] -

(O/1 9Ty *sp30oa1 ‘skeiry) gy s, JnopuUT] -
onp $1 g Jo wriBosd ‘onp $1 gy jo uBisaq -

sAwire [vuoISTIWIP-NE sFuins ‘s v Jo os() -

oravl 0T YIAM
- . s%nped ‘mopdooxg - - v 0/1 91y ‘sodwxond ‘sdy wwp 3ounsqy -
SV JO UONNOXS MOYS ‘pY SSI8I(- ap 81 yv Jo wwiBoud ‘onp 1 py Jo uBmeqg - sonssy AiqIstA -
€ av] _ R EELN
Lopwaoqey fuudssy sido], ssep)

Ada Technology 1993

nference on

1 Co

89 1l1th Annu_al Nationa

implement absiract data types are explained. It is at
this point that a more detailed explanation of
packages, passing execptions, etc., are discussed.

The concept of code abstraction is explained using
the generic structure on a sorting example. Finally,
an introduction to dynamic data structures is given.
The creation of dynamic variables and their use in
creating linked lists and traversing linked lists is
covered. It should be noted that the concept of
recursion is not introduced in this course.

Assignments and laboratory exercises

A total of eight programming assignments are given.
Of these, the first three are of an introductory nature
and are done on an individual basis. The latter five
assngnmenm are done in teams. The first assignment,
which is not given unti! the fourth week of classes,
is of the nature of a "hello world" program. The
second assignment involves some output formatting
and the third assignment is based on the use of
selection statements.

Each assignment requires the preparation of a design
document. This document consists of: (a) the
problem statement (b) requirements specifications (c)
analysis - the data flow diagrams (d) design -
structure chart showing the modules (e) module
design specifications indicating the input, output and
processing of each module. The design document is
mandatory and must be submitted before starting the
code. The code is based on the design, and the close
relationship between the structure chart and the
actual code is emphasized. The simple nature of the
first three assignments helps in ironing out the
details and links between design and code.

Beginning with the fourth assignment, the size and
the complexity increases. At this point the class is
divided in teams of size two. The members are
chosen using a draw. One person is responsible for
the design document and the other is responsible for
the code. The roles for the next assignment are then
switched. The following policy for grading team
based assignments is set:

1. Essentially, each person gets the grade for

10.

11.

12.

13.

the work done by him/her. Each assignment
is worth 100 points.

If the design decument is perfect, then the
designer gets 100 points.

If the code follows the design and is perfect
the person in charge of code gets 100 points.
If the design is correct, and the code is

incorrect, points are taken off from the

coder.

If there are flaws in the design document
the designer loses pomts

If there are flaws in the design, and the

coder codes it following the design (resuiting

in badly designed code, though correct) the
coder is penalized a little for not attemptmg
to fix the design

If there are flaws in the design, and the
coder fixes the design the coder gets
additional bonus points for the extra effort.
The coder shall EXPLICITLY point cut the

. changes in design.

The coder shall not unnecessarily change the
design. If this is done, points are taken off
‘rom the coder.

if design is submitted but code is not

" submitted or does not work then the

designer gets the points for his/her design,
the coder does not get any points for his/her
code. The coder is classified as a "BAD
PERSON",

If design is not submitted, or is so bad that
it is not worth following then the designer
does not get any points for the design. The
designer is classified as a "BAD PERSON".
The coder then has to do both the design
and the code. If the coder does just the
code, he/she gets 100 points for the code. If
the coder also does a good job on design,
then bonus points are given to the coder for
the design.

If a member is classified as a bad person
twice, then on the first chance available, that
member is dropped from the team and the
good person combined with another good
person.

If a team member drops the course then the
left over member will be combined with an
available member. If such a member is not

11th Annual National Conference on Ada Technology 1993

90

A

available, then the remaining membef must
do both the design and the code.

The team policy cnsures that the designer conducts
a proper analysis and design and the coder
understands and follows the design. Initially, some
friction between the team members was observed,
but after a while, the members were able to work
around their schedules. For larger assignments, parts
of the design and code are given by the instructor.

Some amount of class time and lab time is devoted
to discussing the assignments. The executable
solution of each assignment is made available before
the due date. This enables the students to understand
the input and output format. The students can also
test the performance of their program on certain
input data and compare it agamst the instructors’
“solution. After the assignment is due, the solution of
the assignment is shown to the student, and the
design and code are discussed.

The laboratory exercises are conducted in a closed
laboratory environment. A lab manual® which has

" exercises based on the text and class material is

made available. The objective of each of the
exercises is explained first and then the students are
allowed to complete the work. The first few lab
exercises familiarize the student with the operating
system and the Ada compilation environment. Most
of the other lab exercises consist of incomplete or
incorrect programs which the students have to
complete, correct or enhance.

Conclusions

The €S1 course was taught by the author, using the
above syllabus, for the first time in Fall 1992. The
author has tauglt the course many times in Pascal

and he observed that the software engineering/Ada
combination led to better solution’ designers.
Enforcing the completion of design before starting
code helped the students understand the solution
process \much hetter. They were able to find more
flaws in the design. The modular design and
development helped them to quickly find problem
areas and fix them. The closed lab environment
definitely helped the students in reinforcing the

1. Hooper, James,

concepts learned in the classroom. The number of -
assignments may be reduced by one or two by
combining concepts. The CS2 course based on this
approach of CS1 is currently under preparation.

References

"Planning for Software
Engineering Education Within a Computer
Science Framework At Marshall Universisy”
Sixth Software Engineering Institute
Conference on Software Engineering
Education, Oct 5-7, 1992, San Diego.

2. Lodgher, A., "Ada Language Design, Stjle ,
and Documentation Manual ", Department of
CSD, Marshall University.

3. Lodgher, A., . "CS1 - Computer
Programming I Lab Manual®, Department
of CSD, Marshall University.

Akhtar Lodgher (Ph.D 1990, George Mason
University) is an Assistant Professor in the
Department of Computer Science and Software
Development (CSD) at Marshall University since
Sept 1990. His teaching and research interests are in
the fields of software engineering, data structures,
algorithms and ohject oriented programming.

James Hoopei (Ph.D 1979, University of Alabama,
Birmingham) is a visting Professor, from the
University of Alabama, Huntsville, occupying the
Arthur and Joan Weisberg Chair in Software
Engineering at Marshall University since Fall 1991.
His teaching and research interests include software
engineering (especially software reuse and the
software process), programming languages and
discrete event simulation.

11th Annual National Conference on Ada Tecﬁnology 1993

AT —

A COMPARISON OF ADAAND C
AS TEACHING LANGUAGES

Martin L. Barrett
M. Susan Richman
Computer Science Department
Penn Stale Harrisburg
7{7 W Harrisburg Pike
Middletown, PA 17057-4898

Abstract

The demands of the marketplace are causing
some Computer Science programs to change their
main teaching language from Pascal to either Ada
or C. This paper discusses the strengths and weak-
nesses of the two languages in an educational con-
text. The goals of software engineering and general
pedagogical concerns are used to structure the dis-
cussion. Availability of materials and student atti-
tudes towards the languagus are also discussed.

1. introduction

The choice of a language in a Computer Sci-
ence program has broad implications for teachers
and students. This paper discusses the pros and
cons of Ada versus C as a language for computer
science education. The context of the paper is the
initial core of courses in the curriculum (usually re-
ferred to as CS1, CS2, and Data Structures), Both
languages offer features that make them poasible
choices as the support language across the curricu-
lum. The dominance of Pascal as the language of
choice in these courses has declined. The main com-
petitors of Pascal for class use are now Ada and C,
with some usage of C++, Smalltalk, and Lisp. The
marketplace has never used Pascal much, but has
consistently supported C and Ada. This has lead to
the use of these languages in many schools, either
as the main language or at least as an optional lan-
guage. Both languages have been used for medium
and large commercial and research projects.

. When evaluating languages for course use, it

is important to keep in mind the main goals of
a Computer Science curriculum. The ACM/IEEE
Curriculum Recommendations! offer several alter-
native program goals. We believe that the most

important gocls are to produce students who are
both problem solvers and communicators, rather
than simply coders. To this end, the software engi-
neering goals and principles are used as a basis for
the comparison of the languages.

Some of the issues to be considered when eval-
uating programming languages for instructional
purposes are:

(1.) how difficult is the language to learn/teach?

(2.) does the language encourage good practices
and discourage poor practices?

(8.) is the language easy to use?

(4.) does the language inspire or dampen enthusi-
asm?

In each of these matters, while worthwhile re-
sults are often difficult to achieve in computer sci-
ence education as with other aspects of life, to what-
ever extent the language assists the student and
the instructor, those positive results become more
likely to occar.

In addition to discussing features, therc is a
brief discussion of the availability of texts, compil-
ers, and other resources, and of how the languages
are perceived by students.

2. Comparison of Features

Ada and C have many similar features. Sim-
ple variable types, control constructs, function and
procedure parameters and scoping, and structured
data types are different in the details in the two
languages, but alike enough for teaching purposes.
Important differences exist, however, on a number
of issues. Following Booch 2, the goals and princi-
ples of software engineering are used to illustrate
these differences.

11th Annual National Conference on Ada Technology 1993

92

93

The following four concepts are given by Booch
as the goals of software engineering: understand-
ability, reliability, modifiability, and efficiency. The
principles of soware engineering that ullow these
goals to be met are discussed below.

Understandability v

Quite often, beginning programming students
(and advanced students also) enjoy the challenge
of communicating in the somewhat alien language
understood by computers. If they enjoyed writ-
ing clear English prose more than technical jargon,
they would probably major in one of the humanistic
studies rather than computer science. It's not an
accident that the descriptive phrase used is, “play-
ing with the computer.”

By using a high-level language which approx-
imates English prose, a student is removed from
the alien fecling of having to think at the machine
level. Student are given the tools and language to
communicate meaning and intentions to whomever
is reading and maintaining code. Writing readcble
code is encouraged.

Adais sufficiently readable (with careful choice
of identifiers) to be mostly self-documenting, com-
ments being used primarily to explain the non-ob-
vious. Comments can be a two-edged sword in code
with a long lifetime; if a maintenance program-
mer does not also modify documentation to meet
changes in code, the documentation becomes incor-
rect.

ditional layers of complexity to the problem-solving
activity. C code can suffer without discipline by
the programmer, since C is not inherently self-doc-

umenting. Many examples exist of C statements ‘

which even an experienced C programmer would
find difficult to decipker. This often involves point-
ers, arrays, and functions, such as int *(*print) To
some extent, C programmers consider this kind of
code as a badge of honor. Instructors should not en-
courage this kind of code, of course. Similarly, weak
typing in C allows variables to change, chameleon-
like, from one type to another at the programmer’s
whim.

At a higher level, the data structures and mod-
ules of a program must be easily understood. If you
can't understand the problem and the solution in
terms of the problem (i.e. at tlie abstract level) you

The sometimes obscure syntax of C can add ad- .

can’t hope to be able to understand the solution at

. the implementation level. Abstraction allows stu-

dents to focus on problem-solving, rather than the
details of the implementation.

Both languages have facilities needed to build
custom data types and to mordularize programs.
Logical data types such as linked lists and trees
can be built in most structured languages, how-
ever, and is not discussed further. Modularity is
handled somewhat differently in each language.

For example, C does not allow nesting of func-
tions, while Ada does. In C, a function called only
from inside one function is still visible to other func-
tions rather than being private. Ada allows proce-
dures to be nested, so that modularity and need-to-
know inforamtion hiding is achieved.

Functions can be grouped into files for sepa-
rate compilation in both languages. Typically, C
function prototypes are placed in a header file that
is included by other modules. Ada uses an inter-
face definition for a module. The mechanics are

_ different, but the effect is the same.

C can provide a measure of information hiding
through the use of separate compilation medules.
Header files provide function prototypes and vari-
able type information to other modules. The de-
tails of the data structures themselves can be kept
withir. the modules. Abstract data types are sim-
ulated through the use of pointers to data struc-
tures and providing only those prototypes neces-
sary to manipulate those data structures. How-
ever, since the pointer can be used to access the
data structure’s components, and the compenents
can be found in the header file, true data abstrac-

~ tion is not possible. ' :

Polymorphic data structures (those that are
type-independent) are possible in C by using void
pointers. Code that operates on such structures
cannot use on any data stored in the structures.
This is not enforced by C but relies on pregraramer
.discipline.

In Ada, one can easily construct abstract data
types using packages, sc'ving the information hid-
ing problem. Only the public interface is accessable
by calling routines; private procedures and data
types are not accessable. ADT’s are one step away
from objects.

Polymorphism is handled in a different way in

11th Annual National Conference on Ada Technology 1993

—

's\a-rt;,.'- - —

Ada, using generic packages and instantiation in

the appropriate data type. ‘

There are no inherent restricticns on whether
the functions in a C compilation module are related
to one another. The cohesion of the module is left
to the programmer. Likewise, different modules
may be related to each other by functionality or by
data structures if the program:ner chooses, allow-
ing a high degree of coupling. In Ada, packages
provide a natural structure for encapsulating log-
ically related types and subprograms. The use of
packages encourages logical structuring, but as in
C, there is no enforcement of high module cohesive-
ness or low intermodule coupling. Since these are
design issues, an instructor must enforce appropri-
ate standards.

Rollabllity

Ensuring that a program can prevent aud/or
recover from errors is a key to producing quality
software. Overall software quality assurance is
probably beyond the scope of the first few program-
ming courses, but several important issues should
be covered.

Type checking can ensure that certain types
of errors are prevented. C has weak type checking.
For example, an enum (enumerated) type is treated
as an integer, so that an enumerated variable can
be passed in place of an integer parameter. Since C
compilers allow this, the lint precompiler must be
used to detect it. C aiso lacks the ability to declare
subrange types. Out of bounds errors can easily
occur, as in array references. Promotion of numeric
data types within expressions is often automatic,
using a progression from integer to float to double.
Manual promotion is also possible, as in (floa:)i.

Ada has strong typing. There are several con-
sequences of this fact: (1.) Safer code. The sys-
tem catches faulty data and informs student rather
than using the data in calculations, making code
easier to debug. This requires clear thinking re-
garding appropriate data types and allowable op-
erations. {2.) More thinking about design and data
types is required before coding. (3.) Programs can
be more tedious to write because of (2). (4.) Type
checking across compilation units assists in build-
ing modular code which can be integrated readily.
Monolithic code'is inherently more difficult to de-
bug. ‘

Exception handling is provided in C by includ-
ing the errno and signal header files. Usage of error
codes and signals is rather esoteric and is usually
omitted from beginning courses.

Exception handling is used frequently in Ada
and is quite helpful in finding source of errors. Pre-
defined exceptions are readily crught by the sys-
tem, and students have options in handling excep-
tions. Compilers, though, could be more helpful in
giving details of conditions under which exceptions
were raised.

Modifiabi’ ty

Modifications to code must have only small, lo-
cal effects - “controlled change”, as Booch says. The
key to controlled change is structured, modular de-
sign. Almost any raodern programming 'anguage
supports structured programming and modularity.
As noted above, C does not allow nesting of func-
tions; all functions are at the same level. Modules
- separate compilation units - are supported.

Several factors limit the eftfects of i ;dularity
in C. The fact that global variables are allowed is
naturally an inhibitor to controlled change. Vari-
ables may be global to a program by placing them
in a header file or by declaring them as external,
or may be global only to the module that they are
declared in.

In Ada, modularity is enhanced by packages
and facilities for separate compilation. By devel-
oping the specification for a package and delay-
ing consideration of the body’s implementation, the
student can concentrate on problem-solving. This
in turn supjorts top-down design. '

Efficiency

There are several interpretations of efficiency.
The one most often used is time related: speed of
execution. A second is space related: size of data
structures and overall code. The trade-offs between
these twr: are usually diccussed in the Data Struc-
tures and Algorithms course(s). A third meaning is
left to Software Engineering: efficiency of the de-
velopment cycle. This is related both to the ease
of program development and to the ability to reuse
code.

Students often become overly concerned with
the efficiency of code, sometimes focusing on at-
tempts to achieve marginal increases in speed or

11th Annual National Conference on Ada Technology 1993

94

savings in memory at the expense of more impor-
tant goals such as understandability or modifiabil-
itv. Recognizing the commonly applicable “90-10
Rule” (90% of execution time is spent in executing
10% of the code) the student can perhaps be per-
suaded to isolate the expensive 10% of the code,
and concentrate on optimizing that without sacri-
ficing other desirable traits of the remaining 90%.
The modularity features and adherence to inter-

faces of Ada units provide powerful support for this

approach,

On the other side, sometimes instructors tend
to lose sight of the importance of making efficient
use cf the student’s time, energy, and enthusiasm.
Programming assignments should ideally be de-
signed so that they challenge, without overwhelm-
ing, the student. There should not be an excess of
tedious detail to blur the new concepts. The strong
typing of Ada often seems tiresome at first, but
for understandability and reliability, that is prefer-
able to the weak typing in C which allows vari-

_ ables to change from one type to another. When

you violate the rules in Ada, the compiler informs
you fc"t.hrightly If you unintentionally violate the
rules in C, the compiler proceeds blithely, and you
may have no idea that your results are meaning-
less, or why. ,

The greater reusability of Ada code encourages
and supports the building of madules which can
readily be incorporated into larger systems. Such
systems can approximate applications in the “real”
world more closely than typical programming as-
sipnments.

Code reuse in C is accomplished via libraries.

‘Related functions can be gathered together ina - —

module, then compiled and stored as a binary mod-
ule. C handles many simple tasks by this method
rather than including language primitives. There
are libraries for mathematics, string operations,
and file operations, among others. Users can create
their own libraries and often do - for vector func-
tiong, image and signal processing, and so on. The
amount of reuse of these libraries is low, however,
with users forced to write their own libraries if a
source cannot be found. .

Software comporents in Ada can be re-used
on several levels: (1.) Code can be supplied to a
student to use in application. (2.) Students can

develop modules to be used as basis for ultimately
larger systems. (3.). Maintainable code can be mod-
ified (or even made generic) to relieve the tedium
of doing “the same stuff with only a few modifica-
tions.” This is especially helpful in the Data Struc-
tures course.

While not appropriate for students to design

. and write in CS1, simple generic units can be pro-

vided for the students to use. This promotes think-
ing in terms of abstractions and about common
propemes and algonthms

8. Instructional Concerns

The difficulty of teaching a language depends,
of course, on the audience. Experienced program-
mers have a context within which to place new
ideas; conversely, some old ideas may need to be
unlearned. For a beginning language, one would
hope to encourage good habits and discourage bad
ones. ,

The basic con=tructs of each language are quite
similar. Variable declarations, looping, decisions,
and procedures are handled similarly. A number of
differences have been discussed prewously, several
more are offered here.

Input/output is complicated in Ada by the need
to instantiate generic I/O packages. For beginners,
the instructor needs to provide an “Easy_10” pack-
age to ease this. C’s I/O is more straightforward
for beginners. There are simple formatting rules
for all types, provided the stdio header is included,
that allow I/0O without too much effort.

Parameter passing in C is complicated by the

pointer notation. Rather than Ada’s designationsof -

out toreturn values, C requires that a variable’s ad-
dress be passed using the & operator and received
using the * de-referencing operator. When com-
bined with the need to pass variables that are al-
ready pointers (as in linked list processing), this is
quite cumbersome. Ada allows any type of variable
to be passed - - record, multi-dimensional array,
access types, private types, or even task types. Ac-
cess types provide dynamically created variables,
similar to C pcinters but strongly typed.

While it is possible to write cryptic code in any
language, C has the reputation of encouraging such
code. Programmer discipline is needed more than
in Ada to write clear, concise, modular code.

95 11th Annual National Conference on Ada Technology 1993

4. Availability

The availability of Ada texts is no longer the
concern it was previously. Introductory texts and
data structures texts are now widely available, as
are a fair number of Software Engineering books
using Ada. The Ada Information Clearinghouse
provides a listing of current Ada books (over 130in
the latest list). The Catalog of Resources for Ed-
ucation in Ada and Software Engineering 3, also
from the Ada IC, is a list of courses offered in Ada
at colleges and universities. Books using C are also
readily available. For other courses, though, nei-
ther language is commonly used. Ada continues to
suffer from the scarcity of affordable, easy to use
compilers and PC environments. There are several
PC Ada compilers available. There is a freeware
Ada interpreter for workstation environments, and
afreeware Ada compiler will be available soon. Cis
rormally the default language in workstation envi-
ronments, so compilers are normally included with
the system software. There are a number of popu-
lar PC compilers for C that are af’fordable for stu-
dents.

§. Student Perspectives

A small group of students who had experience
in both Ada and C were interviewed on their views
of the languages. Despite the small sample, several
interesting points were made.

Overall, Ada programs were easier to read.
Programmer discipline, the students realized, was
a key to writing readable C programs. This was
also true of other goals, such as modularity, tight
interfaces, and type checking. In C, most of the
students could not overcome their desire to use un-
derlying data type when using enum variables, for
example. In fact, while Ada's strong typing was
geen as an overall advantage, most found it some-
what confining.

There was general agreement that packages
and generics were a powerful tool in Ada that C
could not match. The resulting modularity of their
programs was cited as an important factor in de-
signing programs. In addition, focusing on the
procedure/package specifications made it easier to
handle information hiding.

Exception handling was superior in Ada. Since
it is an inherent part of the language, all the stu-

11th Annual National Conference on Ada Technology 1993

dents used it and felt comfortable doing so, real-
izing that they were writing mo~e reliable code.
Input and output were rated gs somewhat difficult
in Ada, at least for beginners. In C, it was easier
to format output data without worrying about in-
stantiating I/0 packages. Afier the students had
more experience with generics, this was less of a
problem. .

C was regarded as a more “powerful” language

than Ada. This misperception related to being abla

to handle low-level programming, such as device
manipulation, in C but not in Ada. This kind of pro-
gramming is, in fact, possible in either language.
Pointers were also noted as a powerful feature, but
the steep learning curve to mampulate C pointers
correctly was mentioned.

6. Conclusions |
|

When compaﬁng programming languages, per-
sonal preference plays a large part. In determining
what language to use to implement a project, the

presence or absence of special features may be criti-

cal to efficient implementation, or even to the possi-
bility of implementation. For instruction purposes,
though, there are different considerations. This pa-
per presented some ideas relevant to instructional
languages from a software engineering framework.

There are several advantages of Ada over C as -

a teaching language. That C requires programmer
discipline to achieve similar effects as Ada shows
that Ada is the more natural language for use in
instruction. Self-documentation, an emphas)s on
modularity, and greater reuse of code are all ad-
vantages of Ada.

So why choose C? Marketplace pressures en-
suce its survival, but that is not enough to choose
it as a teaching language.

7. References

(1] ACM/IEEE—CS Joint Curriculum Task Force,
Computing Curricula 1991, Feb. 1991.

[2] Booch, Grady, Software Engineering Wiih
Ada, 2nd Ed., Benjamin Cummings Publish-
ing Company, Menlo Park, CA, 1987.

[3] Catalog of Resources for Education in A-
da and Software Engineering, Ada Infor-
mation Clearinghouse, Lanham, MD, 1992.

96

°

57

The TIPSE: An educa.tional support enviroﬁment

M B. Ratchffe, B.R.Whittle, M.F. Bott & T.J. Stotter-Btooks
University of Wales, Aberystwyth

Abstract

This paper presents an integrated envi-
ronment that is under developraent at the
University of Wales, Aberystwyth, with the
specific goal of supporting the teaching of

_software engineering'. The environment
presents users with a fully integrated tool

set that addresses many aspects of the
software life cycle. To a large extent, the
environment has been developed through
the reuse of existing software,

The paper is divided into two parts. First,

the technical details are presented This is

followed by a discussion of the educational
aspects of the environment, its application
to a number of different courses, and an
evaluation of experiences to date.

1 Introduction

Software Engineering is a common theme
running through all of the courses offered
by the Computer Science Department at

the Upiversity of Wales, Aberystwyth;

it is evident in the emphasis placed
on design, quality assurauce and project
management. The introduction, in 1986,
of Ada as the main programming language
has enabled students to apply some of the
design principles that they learn, but the
lack of specific support software still makes

3Parts of this paper have previously appeared ic
an article [1] in the Software Engineering Journal
and are reproduced bere by kind permission of the
editors.

it difficult for them to practxse everythmg
they are taught.

The environment being developed by the
Software Eungineering Research Croup at
Aberystwyth is capable ~f supporting most
of the software deveiopment process. It
will eventually provide studznts with tools
to support design, coding, project manage-
ment, document production, verification,
validation and testing. ‘

The environment is far more than a
colletion ot integrated CASE tools [2].
It has been designed to be used in a
viay which demonstrates many of the
concepts of software engineering in 2
practical and educational manner. For
ihis reason, it is known as the TIPSE, an
Integrated Project Support Environment
for Teaching.

Users of the TIPSE are able to experience
first hand the benefits to be gained from us-
ing and developing software within a fully
integrated environmcent; an environment
that is currently integrated at the !svel
of databese and user interface but which

-will be ultimately integrated at the level of

process.

The current releasc of the TIPSE is already
being used by students and its effectiveness
evaluated. It is intended that new tools
will be added and existing ones enhanced
until the TIPSE becomes suitable for
use, not ouly for unuergraduate students,
but also for participants on advanced
software engineering courses. To satisfy the
different experience levels of its users, all
releases of the TIPSE will have separate

11th Annual National Conference on Ada Technoliogy 1993

modes of operation for both naive and
sophisticated users alike. Th2 system
is inherently multi user because of the
need to provide effective support for group
project work.

2 An integrated approach

The widespread adoption of structured
methods by software engineers together
with the increased availability of compara-
tively chcap powerful workstations has lead
to a proliferation of CASE tools available
on the market. Although there are now
tools to assist in almost all aspects of
software development, few address more
than a very limited number of stages within
tke software lifecycle.
typical user will have access to several
different CASE tools working on several
different platforms. The transfer of data
from one *col ‘s another is often difficult
and mainteining consistency between the
different tools is almcat impossible.

The idea of supporting tool interworking
is certainly not new. In 1980, the
Stoneman Report [3] promoted the idea
of using a project dotabase to hold the
products of the software development
process. Such a database would be
all encompassing, storing everything from
project plans «nd initial specifications
through to object modules and test daia
sets. The relationships between the objects
would also be captursd and tools would
only be able to access the information via
the database. Over the last ten years,
much work has been undertaken in this
area particularly by the two international
tool support interface projects PCTE [4]
and CAIS [5, 6]. The need for a tool
support interfaces is now widely accepted
and forms the basis for our development of
the TIPSE.

Integration at the level of the database is

11th Annual National Conference on Ada Technology 1993

Consequeutly a

just one facility provided by the TIPSE.
Consistency of interaction of all tools with
the user is ¢ very powerful integrating
principle. Users should be able to move
fromn one tool to another without having
to familiarise themselves with alternative
methods of interaction. It is not desirable
for users to undergo retraining every
time a new tool iz provided within an
euvironment, indeed thic principle shculd
apply not only tn different versions of
a particular tool but also to completely
different tools. Although this is important
in all environments, it is particularly
relevant trom a teaching perspective.
Obviously a graphical design editor and
an Ada compiler cannot present identical
interfaces to the vser, but the ‘principle of

minimum surprise’ should hold; in other

words, the same user a.tion should have
predictably similar effects within differeit
tools. This means, for example, that mesu
selection should alvays be done in the same
way and that users of the tools should
not be presented with different styles of
user interface by different tools. MicroSoft
Windows 3 is an excellent example of an
environment which exploits this principle
very etfectively.

There is an increasing inlerest in the role
of process modeling as a third axis of
integration (see [7] for example). Just
how far this is appropriate in a teaching
environment is something that we are
currently investigating, -

3 Foundations of the envi-
ronment

The Software Engineering Research Group
at Aberystwyth first began work in the
area of integrated support environments
back in 1984 as a partner in the
Aivey Eclipse consortium [8]. The
second generation IPSE produced by this

98

¥

R T S e

R

P
i

3
Sl

gy
Py TN

it 3 by

.\
o o~ har

i

R

R

4

BN

s,

r e

Tk

<5 F #y

=

.

Gt o & .
e W g

A ¥

i
K
* .

99

“consortium has since been developed and

exploited commercially by IPSYS Software
plc, in the form of the Tool Builder's Kit
(TBK) [9]. The influence of a related
project, PCTE (Portable Common Tools
Environment)?, can be seen ciearly in the
development of Eclipse and has been ac
importont consideration within the TIPSE,

Initial ideas ahout the TIPSE were
strengthened by our experiences on the
ESPRIT funded DRAGON project [10] in
which we developed a prototype structure
editor capable of supporting both textual
and diagrammatic views of a program from
a single underlying data structure.

Throughout our collaborative efforts, one
unifying theme has been that of software
reuse. It is not surprising therefore that the
TIPSE is being developed as far as possible
through the reuse of existing components.

At the heart of the TIPSE lies the TBK
tool support interface. It consists of
libraries of generic facilities which we
have used to implement our tools. Tools
produced in this way are normal Unix
tools whizh coexist with all other Unix
tools. All of these tools present a common

user intcrface and share common database

access procedures, so eunabling » high
degree of integration. Though the current
relcase of the TBK is stand alone, a
decision has been made that future releases
of the TIPSE will be available on the
Emeraude implementation of PCTE.

Fig. 1 illustrates the main component parts
of the TIPSE.

Integratioh through the database

The TBK database 2t the centre of
the TIPSE closely follows the entity-
relationship-attribute model of PCTE. Ua-
like relational database implementations

?PCTE has been recently accepted ay an ECMA
(European Computer Manufacturers Association)
standard for CASE tools.

which simply record detajls. of software
products held within a conventional file
store, the entity model actually stores
the objects within the database itself.
Specifications, souice code objects and

_even progrem libraries are all held as

individval database entities. The links
between these objects, for example those
which exist between an object specification
and its implementation, are stored as
actual links within the database.

A further advantage of adopting the PCTE
model is the strong typing that it provides,
Through the object management system
{(OMS), the user is able to define and-
manipulate objects but only in strict
accordance with the rules defined for the
perticular object types. These rules,
that is the properties of the information
types, are defined in the form of schema
definition sets which are used at run-
time to enable visibility over the database.
As will be described later, these schema
definition sets =zre fundamental to the
provision of multiple views and the support
of incrementality within the TIPSE.

As a refinement cn top of the PCTE data
mode], the database provided by TBK
permits a fine grain definition of objects
in the form of a second tier. In this way it
is possible to detail the contents of certain
object types; Ada source code might be
stored in the form of a syntax tree, for
example, Similarly an object at the first
tier might be defined as a deliverable
document; the second tier definition of such
an object then defines the structure of
its contents, the breakdown of individual
chapters into sections and paragraphs.
Facilities for accessing and manipulating
the objects at both levels are provided
through a single unifying interface.

11th Annual National Conference on Ada Technology 1993

3
&

t

Project
Management
Tools

Portability Layer |

PCTE [Operating \ X
/ System

Windows

Figure 1: The TIPSE architecture

Iutegration through the user inter-
face

The second axis of integration within the
TIPSE is that of the user interface. All
of the tools interact with the user through
a set of high level interfaces provided
by TBK. These interfaces ensure that a
consistent user interface is provided in a
device independent way.

The power of the user interface is achieved
by separating the front end from the rest
of the tool. This idea is based on the
philosophy that a tool simply supplies and
demands information to and from the user;
it need not be concerned with how this
information is handled. For example where
a tool wishes the user to select a value from
a set of possible values, the user might
be asked to choose from a menu with all
options on display, cycle through a set with
one at a time on display, or type a value
which is then checked for existence in the
permitted set.

To achieve this separation, calls to the
interface components are not hard coded

11th Annual National Conference on Ada Technology 1993

into program code as one might expect.
Instead, the interaction style and layout of
all tools produced using 'TBK is described
by means of the ‘Format Definition
Language’ (FDL). Using this language, the
tool builder is able to give a specification
detailing layout and functionality of the
uver interface. FDL does not just define the
static appearance of a tool; it is also used to
associate operations with the interface, for
example, the action to be executed when
tae user clicks on a button.

The FDL definitions are held in a separate

text file which is interpreted on execution

of the tool. As the tool starts up, the
required user interface is generated as
specified by the FDL definitions. If the
programmer is unhappy with any aspects
of the user interface, the FDL definitions
can be easily altered and the tool re-
invoked to show the new leyout. No
recomgilation or rebuilding of the tool is
necessary. These dynamic aspects of FDL
make the user interface facilities of the
TIPSE very powerful and enable users
within the environment to successfully

100

-

R T Ty L

by

devclop tool interfaces in a very short
period cf time.

The high level user interface primitives
have been implemented to run under
the X Window system [11]. This is a
particularly important feature as it enables
the environment to include tools which run
on hardware configurations other than Sun

work stations, the original environmeut

of the TIPSE. The TIPSE may include
software which, though running on a PC,
interacts with the user sitting at the Sun
work station. Such PC applications might
be supported by DOS emulators running
on the work stations. It is expected
that a number of project management
tools including Microsoft Project will be
supported in this way. Whatever m'ethod
of implementation is used, as far as the user
is concerned, all of the tools will appear to
work on a single platform.

4 The meta-tools - baild-
ing blocks for the TIt’SE

The generic function layer of TBll (see
fig 1) provides the TIPSE with a number
of powerful meta-tools which we hav,é used
to generate a closely integrated tool set.

- A generic design editor can be instantiated

to provide diagramming suppost for all
aspects of software engineering, from
simple data diagrams to more complex rep-
resentations used by a structured method.
This editor not only provides operations
for manipulating diagrams, but also checks
that the design conforms to the rules of
the method. With a little specialised
custcmisation by the tool builder a very
powerful tool can be produced.

A similar, and complementary tool to the
design editor is the generic structure editor.
Both tools simply present to the user
different representations of objects that are

held within the database. The design
editor presents a graphical view of these
objects; the structure editor presents a
textual view. By manipulating the on-
screen representation of an object, the user
is actually altering the database.

These meta-tools have been used to build

‘tools in a fraction of the time pormally

required. They form the basis of a
number of high level tools many of which
are still under development, that will
help ensure the student obtains maximum
benefit from using such an environment.
The tools that are available in the current

release of the TIPSE include method

support tools (including diagrammatic rep-
resentation), programming support tools
(such as programming language structure
editors), version control and basic project
management tools,

4.1 The TIPSE front end

The facilities offered by the TIPSE are
all accessed through a centralised control
panel which has a similar appearance to all
of the other tools within the environment.
In addition to utilising the user interface
primitives, this uniformity of user interface
has been achieved by the adoption of a
standard interaction metaphor The TBK
control panel idea [8, chapter 6}, follows the
analogy of an interface to a complex piece
of hardware, like the operator panel at a
power station; the user interface provides
interaction possibilities in the form of
buttons, menus, state selectors, indicator
lights and signs. The similar appearance
of the two tools depicted in Figs 2 and 4
demonstrates this consistency.

In support of an incremental philosophy
adopted by the TIPSE, the control
panel has been designed to offer facilities
dependent upon the skill levels of the
student. Initially the facilities include only
basic editing operations and programming

R

QI sccs B

O Owrront Directory

l/tnp=mt/hom/seg/pnrt_a/n;pt/nbr/'rIPSE_vork j Change Control

[File Information Merm]

[[hewm Tool Hamm |
&1 Location of SOCS Directory :
L{tmp_nnt /hone/seg/part_a/m_pt/nbr/TIPSE_work] SCCE User
O File
|nain ¢] | Register in SCos File|

| File Operations Xorw| |

Figure 2: The TIPSE change control tool

support tools, but as the users become
more experienced, the available operations

are enriched to include configuration.

control and project management.

The TIPSE as a programming
environment

Although the TIPSE now provides tcols
to support many different stages of the
software development process, develop-
ments were initially directed at supporting
programming. Even before the idea of
the TIPSE had been developed, a number
of research projects at Aberystwyth were
already providing support eavironments

“for the Ada programming language.

The most significant of these environments,
DDT [12], developed under the DRAGON
project [10], supported the notion of
multiple views. Though only a prototype,
the user of this tool was able to textually
specify an Ada program and then, for
example, request a graphical view to
show the program’s relationship with other
library units.

The idea of utilising multiple views within

11th Annual National Conference on Ada Technology 1993

a structure editor has been fundamental
to the design of our current tool set,
Currently Ada is the only supported
language, but deveiopments are being
planned to support languages such as C
and C++4. Fig. 3 shows an example
invocaticn of the editor, for a partially

" developed Ada program.

As with all anplications, the schema
utilised by the structure editor defines the
format of the underlying database and
thereby enables other tools to use the data;
users are able to invoke a related support
tool to obtain HOOD-like graphical views

~ of the Ada programa.

It is anticipated that users of the TIPSE
will invoke the design editor to specify the
high level design of software systems; at

-~ this level a pictorial view is often more

beneficial in illustrating both its internal
structure and the relationship with other
program modules. At any stage the
user may switch to a textual view and
continue with the specification using the
structure editor. Detailed specification
in diagrammatic form, down to the level
of individual program instructions is not

102

B se232
—

[reizt]

[eeeedee] [e&e] [

ADA BTRUCIURE EDITOR

RARARRARARRARACRARAAS

—— << VIEW MANAGER >>

---Edit Package Specification

generic : :

type ITEM is private ;

package BTACK;_PACKME is

type STACK is array (1 .. 10) of 1TEM ;
OVERFLOW : exception ; ‘
UNDERFLOW : exception ;

procedure PUSH (X: in ITEM) ; »

function POP return ITEM ;

private

end STACK_PACKAGE ;'

Figure 3: The structure editor: An Ada editor for part of an Ada program

103 11th Annual National Conference on Ada Technology 1993

Ay

thought to be desirable [13] and will not
be supported. The curreat facilities within
the TIPLE have not yet reached a level of
functionality to enable evaluation of this
approach.

Support for software reuse

During the Eclipse and DRAGON projects,
much work was undertaken in the field of
software reuse (12, 14]. It should not come
as a surprise therefore that the TIPSE
places a lot of emphasis on software reuse.
This is shown both in terms of the way in
which the environment has been developed
but also in the support that it provides
for the users. Our instantiations of the
structure editor and the design editor have
been designed to support software reuse
and to provide the user with access to a
library of reusable components [15]. The
available components are compatible with
both tools and can be viewed in a textual
or graphical mode.

Our experience has been that students
working through the TIPSE have found
the environment complimentary to the
emphasis placed on reuse within the soft-
ware engineering courses at Aberystwyth.
By utilising the library of components,
students are better able to appreciate the
benefits to be gained from both designing
with reuse and designing for reuse,

" Design method support

No software engineering course would be
complete without discussing the role of
design methods.Whilst it is possible to
teach the theoretical aspects of a desizn

~ method within a reasonable period of time,

the learning burdles for the support tools
often negates their practical usage. The
uniformity of user interfaces within the
TIPSE makes it feasible to use a number
of design tools at an undergraduate level.

11th Annual National Conference on Ada Technology 1993

Specific support is currently provided for
the HOOD {16] method in the form of
the IPSYS HOOD tool set {17]. Used
widely by the Aerospace industry, this is
a well respected tool kit that supports an
increasingly popular method. Based on
the underlying TBK facilities, the tools
are fully integrated with many aspects
of the TIPSE and have very similar
front ends. Using this environment, the
emphasis of the teaching can be placed on
the example method rather than on the
complex support tools.

Document Preparation

One of the areas to benefit most from an
integrated database should be that of doc-
umentation, As traditional environments
seldom support any tool interworking,
system documentation is often out of step
with development. With the facilities of
an IPSE, it should be possible to solve
this problem. To ensure compatibility,
design specifications can be linked into the
specification of component interfaces, for
example, and textual and diagrammatic
specifications can simply be different views
of the same data. Initial investigations into
this area look promising.

The environment already includes a struc-
ture editor to support the development
of high quality documents using the
ITEX document preparation system [18].
Furthermore, the adoption of SGML {19]
is under consideration. Through the use
of templates, this facility should provide
the user with a standard structure for
the particular type of document under
production.

104

5 The TIPSE as an educa-

tional environment

The TIPSE has a rich set of high level tools
that are available for its users. The subject
of this section is the exteat to which the
environment can be used to facilitate the
educational process.

Initial developments on the TIPSE con-
centrated on producing high level tools
for supporting our undergraduate software
engineering courses. These tools would
all have graphical front ends to make
them more attractive to their users.
Facilities such as project management
tools, configuration control tools aand
graphically-based design tools all seemed
to be desirable facilities in an educational
environment. ‘

As the development of the high level tools
proceeded, it became clear that the lower
level facilitien, the ac*ual building blocks
of the envir~ument, were ‘o become very
important to the teaching perspectives of
the TIPSE. In addition to foerming the
foundations of many of the bigner level
tools, the database and user interface
facilities have much to offer the trainee
software enginee.. Within the TIPSE, not
only are studeits able to gain first hand
experience of using integrated tools, they
can now also use the raw facilities for
designing and implementing their own.

Prototyping is now considered to be
a very important aspect of software
development. The advantages that the
technique provides in establishing user
requirements, for example, is widely
accepted. Our experience of using the
TIPSE for advanced software engineering
courses has been that the user interface
facilities are very well suited to rapid
prototyping. After an initial learning
period, we have found that students can
very quickly produce a fairly sophisticated

front end. Designing user interfaces is
notoriously difficult and can involve a
lot of tinkering; fortunately the facilities
provided within the TIPSE make this task
a lot easier. With the growing realisation
of the importance of designing user friendly
interfaces, this area is likely to become far
more significant

The database is equally as - important
ea a stand alone facility. Students are '
instructed on the Object Management
System and how the structure of deta to
be manipulated is defiried through the use
of a data definition language, detailing
the types of objects, links and attributes
which can occur within the database. They
are able to investigate how the use of a
cchema grants visibility to the object types
it defines, instances of which can then be
created, manipulated and deleted. Using
a high level language, designed to simplify
the task, students are able to experiment
in defining schemas and in populating the
database. ’

Fig. 4 shows a simple management tool
that was initially developed as a student
project. The tool provides some basic
facilities for interrogating and updatiing
the database and has been enhanced
with the addition of a simple front
end developed using FDL. Other student
projects have lead to the development of

- more sophisticated front ends to the model

using the generic tools; design editors and
structure editors now provide a complete
suite of tools.

One of the main educatioLal benefits of the
TIPSE is its open architécture. New tools
can be added to the environment becoming
fully integrated through|the sharing of
common schemas. To support this facility,
schemas utilised by the predefined TIPSE
tools are also available to our student users
thus enabling them to write new tools to
interact with the database. Modifications

can be made to database objects and the

105 11th Annual Nationai Conference on Ada Technology 1993

] Qs poe @
PROJECT MANAGEMENT L —J
TEAM MEMAERS - TASKS SCHEDULEC
=)
O Tomn_Nen Name O!dl)luo‘ 0 Teow Mem Details
Juike Young 1 [Design pec] Niks Young 800D
Positian Campletad
| chiof pesigner] { rus a
O %ills O Start Dats
fuoo0 l] J10-06-92 i
Ll %cheduled Zad Date
|01-13-92 I @
Q Actual End Dete
[oi-iz-52
O Yoz Nember Name
[taks Young]

Figure 4: Project management tool

effects investigated by invoking one of the
predefined tools. This kind of exercise has
largely been confined to our more advanced
software engineering courses but the results
have been very positive.

5.1 Inérementality

Central to the learning process of the
" TIPSE has been the idea of incrementality.
Whilst the open architecture will enable
the TIPSE to change through time and
thus be extensible, it will also develop with
its users and will change in accordance
with their level of knowledge and skill.
This quality can be achieved in many
ways; a less complex tool could be
replaced with a more advanced tool, for
example, the exchange of a textual editor
for a structured editor. Alternatively
a tool could be enriched by adding
to its functionality; a structure editor
that supports only a small subset of

1Tth Annual National Conference on Ada Technology 1993

the language could be replaced by one
supporting a larger subset. A more subtle
example might be the introduction of
explicit version control features.

Given our commitment to the principle
of minimal surprise, it is important that
an incremental change to a tool does
not invalidate what has gone before; in
particular, the same way of manipulating

. the user interface should produce the
same results and the incremented version

should continue to operate successfully on
a database developed under the previous
version.

In the class room, students are gradually
introduced to the structures of the
language through a logical progression of
examples, These examples, in program-
ming terms, explain not only the structure
and syntax of a language, but also its
semantic logic. It is our intention to retain
this paradigm, primarily through the use

of a family of structure editors, a decision

106

motivated by our experience on other
research projects, such as [12]. Through
the use of these editors, the students are
presented with an environment in which
the structures they have studied appear
to be the only structures in the language.
The user is freed from the syntax details
of the new structures, whilst at the same

time being insulated from the other more

complex language constructs which are yet
to be learned. ‘

The incremental concepts pose an ex-

tra burden on compatibility within the.
" environment where, for the pusposes of

teaching, it is important that the previous
work of students is available at a later date
8o that they may learn from their mistakes
or reuse their earlier code. Fortunately the
schema facilities of the database and the
generic tools available from within TBK
have made this task much easier.

Incremental - editors within the

. TIPSE

The TIPSE provides a family of structure
editors, all of which sre instantiations of
the generic structure editor, driven by an
abstract syntax. This abstract syntax
represents the schema for the underlying
data structure and is the same for all
editors in the family. Incrementation
is achieved by changing the concrete
syntax, which specifies wnat an individual
editor may create and how it views the
database; ‘multiple view:r both textual

_and diagrammatic, are specified in this

way. The system is therefore being
implemented such that although the
underlying representation is constant, the
user view of the structure can change.

To control the incrementation, the TIPSE
allows students to choose the level at which
they will work, within limits set by the
lecturer. . The levels are numbered and
the lecturer can specify that all students

within a given group may use levels 3 to
5; this means that, when studenta invoke
the structure editor, they will be offered
this choice of levels, with a brief indication
of what each provides. As the course
progresses, the lecturer may change the
range to allow levels 5 to 8, and so on.

5.2 Applying the TIPSE to un-
dergraduate courses

The TIPSE has been designed to be
applicable to software engineers with very
different levels of experience. Ultimately,
it is our intention to use the TIPSE as a

practical basis for a number of external '

courses run for industry. Until it gains
full functionality, the the environment is
currently restricted to undergraduate use,

In the first year of their degree course,
students take an introductory course where
they learn to program in Ada and
become familiar with basic data structures;
emphasis is also placed on introducing
the key concepts of software engineering.
During this period, through a process of
continual assessment, students carry out a
small number of individual projects. The
programming complexity is usually low,
for example, a menu driven temperature
conversion system, or a simple line based
editor. However, even at this stage,
students are expected to follow a well
engineered approach to the development of
their software. ' :

The main use of the. TIPSE is at
the level of the integrated front end

“which provides access to tools for design,

coding and execution of Ada programs.
The incremental nature of the structure
editor closely complements the teaching
of Ada, and should be well suited to an
introductory course.

Through the second year, the student
continues to study and write Ada, a

107 11th Annual National Conference on Ada Technology 1993

further main application of tke TIPSE
is the support that it gives for group
project work, an important element of
the software engineering course. The
actual programming tasks are not too
complicated; the role of this exercice
is to focus the students attention on
the group and the interaction of group
working. The project groups typically
contain six students, who liaise with a
cliant, a staff member who also acts as
a consultant/advisor, to develop a project
specification and follow this specification
through to implementation, delivery and
acceptance testing. The facilities that
the TIPSE provides for project man-
agement, configuration management and
project specificetion nicely complement the
material presented in lectures. Certainly,
the' ease with which the tools can be used,
compered to the cominand line interface or
hand techniques, encourages the students
to utilise the tools.

Final year students attend a course on
a.dvia.nced software engineering, where they
are'jnstructed in the principles of IPSE
technology, the development of meta tools
and support for programming in the large.
As fpa.rt of the practical element of this
course the students are encouraged to
usef the TIPSE as an example IPSE.
Rather like the medical student’s skeleton,
the' student can learn principles from
the simple structure presented by the
TIPSE, by exploring the make up of an
environment with which they are already
familiar. Being familiar with what a tonl
can do, the students can concentrate on
how the tool is implemented. A typical
project may involve prototyping a user
interface or manipulating the database;
such examples were described earlier in this

paper.
The scope of applying the TIPSE to

undergraduate courses is not limited by the
currently available toolset, its extensible

11th Annual National Conference on Ada Technology 1993

nature makes it an ideal candidate

for the final year projects when many
students produce additional tools for the
environment. The knowledge that their
tuol will actually be used in the future
by other students provides many with
the inuentive to produce a robust tool
wlen they might otherwise only produce
a prototype. The use of TIPSE based
facilities will expand courses throughout
the degree programme as appropriate tools

~ are developed to support them.

5.3 Evaluating the TIPSE

In order to carry out a reasonable
evaluation of any tool, it is important
to establish a set of criteria under which
the evaluation is to be carried cut. In
industry such an evaluation might be
carried out at two levels: first from the
point of user satisfaction and second from
& management perspective. Are the users
happy with the tool, and do they they feel
it is effective? Are the managers sutisfied
that the tool has provided the appropriate
gains to justify the investment? In
education a similar evaluation might be
carried out. with the students as users
and the lecturers as the manegers. Student
satisfaction is relatively straight forward to
measure. If they use a tool after it has
been introduced and then continue to use
it when any associated assignments have
been completed, then one might reasozably

assume that they are satisfied. Certainly

students rarely need encouragement in
voicing their opinions.

The educational benefit gained from using
a tool is rather harder to ascertain. The
difficulty lies in establishing a control. To
request that a particular group of students
use manual techniques while their peers are
instructed on a fully integrated graphical
tool seems unreasonable. Moreover to
be effective, such an approach might also

108

.
, »-.

require a different emphasis in associated
lectures.

In conclusicn, the evaluatior of the TIPSE
has largely been one of hear cay. The

“environment is still in its iafancy and

suitable techniques for more scientific
evaluation are still being sought.

6 Conclusion

This paper has attempted to give & flavour -

of the tools provided within the TIPSE,

" rather than to detail the method of

implementation. More spécific information
is described in [1].

A university education consists of a
broadening as well as a deepening of
knowledge; at Aberystwyth emphasis is
placed on rigorous software engineering
principles, it is hoped that the TIPSE
will support and enhance the perception
of these principles. It could appear
that the TIPSE provides a restrictive and
over protected environment that does not
equipe students for the situation which

they may subsequently face in industry.

We feel that the main benefit arises when
the TIPSE is used as a support tool,
to reinforce the principles of the lectures
rather than to give emphasis to a particular
method or technique.

Though the TIPSE has now been under

development for a number of yeais, this

has largely been through the efforts of
postgraduate students. Only in recent
months has full time effort been provided
on the project. As a consequence of
this method of development, the project
is continuing to follow a phased approach,
with the software being released in several
distinct stages. At each stage the
functionality is enhanced and the reaction
of students assessed. The current release
of the TIPSE provides many powerful
facilities and is the subject of evaluation

by both undergraduate and postgraduate
users., - .

T Acknbwledgments

The work described in this paper -is
a development of work carried out on
earlier projects. We are grateful to
the Alvey Directorate for its support
of the Eclipse programme and to the
European Commission for its support of
the DRAGON and Sapphire projects; in

~ that context we must also acknowledge the

contributions of our many collaborators.
The work on the TIPSE itself would not

- have been possible without the support of

IPSYS Software plc; not only have they
provided and supported the TBK software
but they have maintained a continuing
interest in the work and contributed many
useful ideas. o

Mr. Whittle’s work on the TIPSE was
supported by Research Studentship No.
90802773 awarded by the Science and
Engineering Research Council. ‘

References

[1] M.B. Ratcliffe, MF. Bott, TJ.
Stotter-Brooks, and B.R. Whittle.
The TIPSE: An IPSE for teach-

ing. Software Engineering Journal., .

September 1992.

[2] A.S. Fisher. CASE, using software
development tools. John Wiley and
Sons Ltd., Chichester, UK, 1988.

[3] J. N. Buxton. STONEMAN: Require-
ments for Ada Programming Support
Environments. United States Depart-
ment of Defense, Washington, 1980.

[4] Commission of the European Com-
munities, DG XIIi/Esprit, 45 Av.

169 11th Annual National Conference on Ada Technology 1993

Auderghem, Brussels. PCTE : A
- Basis for a Portable Common Tool
Environment, Functional Specifica-
tion, 1.5 edition, 1989,

[5] Washington United States Depart-
ment of Defense. Military Stan-
dard DOD-STD-1838 Common APSE
Interface Set (CAIS), October 1986
(actually published in 1987).

~ [6] Washington '
United States Department of Defense.
Military Standard DOD-STD-18384
Common APSE Interface Set (CAIS)
(Revision A), April 1989.

[7] A. 1. Wesserman. Tool integration in
software engineering environments. In
Software Engineering Environments.
Lecture Notes in Computer Science,
467, Springer Verlag, 1989.

(8] M.F.Bott, editor. Eclipse: An
Integrated Project Supvort Environ-
ment. IEE computing series 14. Peter
Peregrinus Ltd., on behalf of the IEE,

1989.

[9] IPSYS Software ple, Marlborough
Court, Pickford St., Macclesfield,
Cheshire, UK. IPSYS Too! Builder’s
Kit, 19890. .

{10] A. Di Maio, I. Sommerville, R. Bayan,
M. F. Bott, and M. Wirsing. The
DRAGON Project. In Proceedings
of ESPRIT ’89 Conference, London,
1989. Kluwer Academic Publishers.

(11) O. Jones. Introduction to the X
window sysiem. Prentice Hall, New
Jersey, USA, 1989.

[12] M. B. Ratcliffe, C. Wang, BR. J.
Gautier, and B. R. Whittle. Dora
- a structure oriented environment
generator. Software [Engineering
Journal, 7(3), May 1992.

11th Annual National Conference on Ada Technology 1993

(13] M. B. Ratcliffe. Prototyping through
the Reuse of Eristing Components.
PhD thesia, University of Weles, 1989,

[14) M. B. Ratcliffe and R. J. Gautier.
System development through the
reuse of existing components. Software
Engineering Journal, November 1991.

{15) RJ. Gautier and P.J.L. Wallis.
" Software Reuse with Ada. Peter
Peregrinus, UK, 1990.

{16] European Space Agency, HOOD
Working Group, Issue 3.1. HOOD
Reference Manual, 1990.

{17] IPSYS Software plc, Marlborough

Court, Pickford St, Macclesfield,

~ Cheshire, UK. IPSYS HOOD tool kit,
1929,

(18] L. Lamport. IATgX: A Document
Preparation System. Addison Wesley,
Wokingham, UK., 1986.

[19] B. Martin. SGML: an author’s
guide to the Standard Generalized
Markup Language. Addison-Wesley,
Wokingham, UK., 1988.

110

Dr. M. Ratcliffe

After graduating in Computer Science
from the University of Wales, Aberystwyth

"in 1984, Mark Ratcliffe joined the staff
as a Research Associate working on the’

Alvey funded Eclipse Project and the
ESPRIT funded Dragon project. During
this period, he carried out research in
the field of Software Reuse, the area in
which he subsequently gained his Ph.D.
As a lecturer at Aberystwyth since 1389,
his main interests lie in the area of
software development environments with
specific emphasis on reuse. Over the last
few years hc has presested, a number of

- industriz! training courses on integrated

environments, specifically PCTE and the
IPSYS TBK. During the academic year
1992-93, Dr. Ratcliffe is working at the
University of Puget Sound, Washington as
part of an academic exchange programme.

Email: mbr@aber.ac.uk
B.R. Whittle

Ben Whittle graduated in Agricultural
Economics from UW Aberystwyth in 1989.
He subsequently compieted a masters in
Computer Science and was. invited to
proceed to research for a Ph.D. in Software
Engineering. As well as his close interest in

“the work of the TIPSE project, Mr Whittle

is also interested in Software Reuse. He is
a member of the British Computer Society

. Reuse special interest group committee and

the editor of the group newsletter.

Email: brw@aber.ac.uk
M.F. Bott

Frank Bott was educated at Wolver-
hampton Grammar School and Trinity
College, Cambridge, where he graduated
in Mathematics in 1962. After graduating
he worked in the Cambridge University
Computing Laboratory until he joined SPL
International in 1968. He returned to

UK.

the academic world in 1977, taking up
a visiting appointment at the university
of Missouri to assist in establishing
a Computer Science programme. In
1979, Mr. Bott joined the Computer
Science Department at the University of
Wales, Aberystwyth, of which he is now
Head. Since being in Aberystwyth he
has run & number or research projects
funded by the ALVEY programme and
the European Commissions ESPRIT and
RACE programmes. He is also interested
in software engineering education and has
edited a recent special issue of the Software
Engineering Journal on this topic. He is a
member of the British Computer Society
and of its Professional Board.

Efna.il: mfb@aber.ac.uk
T.J. Stotter-Brooks

Tim Stotter-Brooks graduated with a B.Sc.
in Economic History from the University
of Birmingham in 1989. He completed
an M.Sc. in Computer Science at UW
Aberystwyth, before becoming a research

- assistant on the TIPSE project in 1991.

Mr. Stotter-Brooks is currently a research

" assistant on the RACE 2076 BOOST

project at Aberystwyth.
Email: tjs@aber.ac.uk

All of the authors can be reached through
the Dept. of Computer Science, UW
Aberystwyth, Aberystwyth, Dyfed, Wales,

117 11th Annual National Conference on Ada Technology 1993

The Rapld Developmant Methodology Applied to Software Intensive Projects

Lynn G. Gref
Jet Propulsion Laboratory
Pasadena, California

William H. Spuck il
Jet Propulsion Laboratory
Pasadena, California . -

The Rapkl Development Methodology (RDM) is an alternative means of devoioping systems to
that of tha conventinnal waterfall method. RDM has been developed independently at the Jet
Fropulgion Laboratory (JPL) but is consistant with the ohlactives of the Evolutionary Devalopment
~proach articuiated by the DoD. Ada with its modemn software englneering features has proven
« Do comgliinentary to RDM. RDM derives from rapld prototyping but is distinct from . Basic to
RDM is tha celivary of useful operational increments of the system to a using organization every
ning to fiitezn months. Each incremental delivery builds on the previous ones and is part of the
fina!l deliverad system. Documentation and other integrated logistics support items of a formal
system development are evolved so in the end the delivered system under RDM is
indistinguichable from that develsped under the conventicnal meihod. Significant advantages of
ADM include the satisfaction of true user needs, delivered system functional capabilities during
the tenure of sponsors and users, and a process that is adaptivete anging funding profiles and
user requirernents. {CM has been used at JPL primarily for the development of large sofiware
intensive systems with over 30 incrementa: deliveries having been made. Project sizes hava

ranged from $10 million spanning a few years to $100 million over a period of 10 years.

Introduction

Tais paper 15 about a better, faster,
cheapar approach to implementing
software-intensive systems, that has
been pioneered and refined by the Jet.
Propulsion Laboratory (JPL). This new
approach, the "Rapid Development
Methodology" (RDM), has been
successfully employed in the
development of Ada-based systems,
though it can be used with any software
language. RDM is an outgrowth of rapid
prototyping concepts and is a refinement
of the evolutionary acquisition model.

RDM employs incremer.tal development
and fielding of the system. User
experience with the currently fielded
increment of the system provides a basis
for the detailed requiremer ts of future
deliveries. This assures user
satisfaction at the end of the
developmental <ycle. Funding charges
and uncertzinties, such as those depicted
in Firure 1, are accommodated by fixing
the - wrent delivery (e.g. ,
specifications, budnets and schedules)

and making necessary adjustments in
future incremental deliveries.

Similarly, RDM accommodates evolving

or even radical changes in the roles and
missions of system users. In the case of
one Command Center System the mission
has evolved from a focus cn a tactical
engagement with the Soviet Union to one
including humanitarian relief and
monitoring national unrest.

Each incremental delivery is treated
essentially as a "complete end-to-end
requirements definition,
implementation and deployment cycle."
This permits evolution of the system
infrastructure and its functionality,
including achieving compliance with new
and evolving standards (e.g. POS!IX, X-
Windows, MOTIF, GOSIP, computer
security standards) as commercial,
standards-compliant products become
available.

New technologies can likewise be
incorporated into the system. In cne
case, a "main frame" database
management system server was replaced

11th Annual National Conference on Ada Technology 1993

S

112

by a RISC-based "workstation" to
achieve better system performance and
transportability at less cost than the
annual maintenance costs of the old
system. Another example is the
enhancement of the Local Area Network
(LAN) with an FDDI-based backbone in
the fourth incremental delivery.

RDM and Ada have proven to be highly .
complementary. The objectives of the
Ada programming language are to: 1)
establish a common programming
language, 2) embody and enforce modemn
software engineering principles, and 3)
facilitate the transfer of software to
different hardware platforms and
operating systems. Under RDM, Ada's
embodiment and enforcement of
principles such as abstraciion,
information hiding, program

modularity, localization, uniformity,
completeness and confirmability
directly supports the evolutionary
growth of the delivered system.
independence from reliance on specific
hardware platforms and operating
systems facilitates the insertion of new
technology into the system. In fact, RDM
achieves the "desired" benefits of Ada
within the development lifetime of a
single software intensive system.

ROM provides a mechanism for faster
and cheaper development. First, the
important operational needs of the user
are met through a prioritization that
determines the content for each
incremental delivery. This avoids the
cost and time of classical methods which
require the development of "every
conceivable capability that can be
imagined” to avoid discovering omissions
after system delivery.

Successful application of RDM strongly
suggests adherence to the 80-20 rule.
(The 80-20 rule states that it takes
80% of the total effort to achieve the
last 209 of the goal.) Under RDM it is
possible to set and achieve targets for
each incremental delivery that are
something less than the ultimate goal
(i.e., 8096). After just a few

deliveries, the essential portion of the
goal is achieved with only a fraction of
the effort required by the old, "single
thrust” method. Additionally, some
"project management items” will be
eliminated, since each incremental
delivery takes approximately one year
from start to finish. For example, there
Is neither schedule time nor need for all
the formal reviews of the conventional
development method.

-Experience with RDM has lead to the

practice of "just in time" engineering.
That is, do only essential tasks and put
off non-essentials. This focuses the
efforts of the staff and eliminates
unneeded work. Documentation is
handled on a "when" and "as needed”
basis, with review comments
incorporated into the next delivery.

JPL's experience shows that a single

. incremental delivery implements

somewhere between a third and half the
capability resulting from a normal five
year conventional development cycle, at
the same level of effort. Experience has
shown that RDM allows more effort to be
channeled into implementation of
capabilities.

Rescription of ROM
First, RDM is neither rapid prototyping
nor a version of the spiral incremental
development model. Rapid prototyping
is used to validate either requirements
or design approaches. When completed,
the prototype is generally abandoned and
the "real" system implemented. Under
the spiral model a system is developed in
increments and deployed at the end of the
development. Each increment
progresses through requirements
analysis, design, implementation, test
and user validation. Hence, the common

reference made to it is "build a little,
test a little.”

Contrary to rapid prototyping, RDM is
used to implement systems. The intent

113 11th Annual National Conference on Ada Technology 1993

of RDM is to make use of every product.
Experience has shown there is some
waste attributable to several factors.
L'~e of the system results in changes to
the users' operational procedures, with
subsequent modifications to system
requirements. These lead to design
changes and "breakage" of the delivered

* copabilities. Besides basic system

implementation, RDM incrementally
develops the system Integrated Logistics
Support(ILS) into a full capability at

the conclusion of the project. The ILS
capability provided at each delivery is
tailored to meet the needs of that
delivery taking into account that the
develcpers provide most of the support

" until the system is finally turned over

to the government for operations and
maintenance.

As opposed to the spiral model, RDM
delivers each increment of the system
into immediate operational use. Asa
result, a system developed under RDM is
fully operationally tested and validated
prior to turnover to the government for
sustainment. '

RDM is a specific project management
approach. It has a set of underlying
tenets. It prescribes management
policies and procedures for system
implementation issues such as project
planning, systems engineering,
configuration management and
documentation. The four tenets of RDM
are:

1. Build and deliver the systemin a
series of regular and consecutive
increments.

2. Actively obtain feedback from
actual field usage and incorporate the
feedback into the system requirements
of future deliveries.

3. Involve the users in extersive
interaction throughout the development

cycle.

11th Annual National Conference on Ada Technology 1993 114

.corresponding to the phases: (1)

_delivery. And of course, the delivered

4, implement the system with
progressive formality so as to achieve
everything essential to sustainment
upon delivery of the final increment.

~ High level planning is done during an

initial project definition phase, when a
consensus between the developer and
customer is reached on a target final
operational capability (FOC)
requirements specification, a system
architecture, an overall budget and an
overall schedule. A modular and flexible

- architecture is essential to support the

incremental delivery of the system and
the evoluticnary specification of system
requirements. Modem distributed
information system architectures
provide one class of examples suitable to
RDM's incremental deliveries.

An overall schedule for a generic oject

is depicted in Figure 2. As discu- ;ed,

the project under RDM consists .f a
series of deliveries. Each dzliver:’ must
go through a "mini" life cycle of its own
consisting of "mini" phases. Th:.se echo
the phases of a convantional de ‘elopment
life cycle with the numbers

Planning, (2) Requirements, (3)
Design, (4) Implementation, (5)
Integration and test, (6) Installation,
(7) Certification, and (8) Operations
and sustainment.

As depicted in Figure 2, the overail

planning (phase 1) is done once at the

beginning of the project. This planis

updated and modified whenever

necessary (e.g. overall budget changes).

The FOC Requirements Specification is :
updated as the system evolves and users

learn more what their real needs are.

Each delivery begins with a mini-

planning effort which determines the

specific scope of the delivery (i.e.

system functional requirements), the \ |
budget and the schedule. Phases two
through seven are repeated once for each

system is operated and sustained
continuously after the first delivery.
Once a delivery has been transferred to -

operations, the previous delivery has
been superseded and it disappears. It is
often possible for the Project Definition
to overlap the first one or two
deliveries, frequently causing them to
be called "preliminary deliveries" in
recognition of the lack of a complete
long-term perspective. These
preliminary deliveries have
characteristically consisted of
capabilities which have been recognized
as essential and have been delivered
previously in other projects.

Experience has shown that the time

_ interval between successive deliveries

(i.e. transfers of capability to user
operations) should fall somewhere
between nine and fifteen months. A .
series of deliveries with intervals less
than nine months have proven to be
impossible to sustain. This is due, in
part, to the effort of the development
staff needed to sustain (e.g. fix
problems) the previous delivery. ‘Also,
"too little implementation time" leads to
a temptation to "cut corners" by
compromising other phases (e.g.

- integration and test). Intervals greater

than fifteen months begin to lose the
characteristics of RDM. External
influences (e.g. funding changes,
requirements changes) begin to upset
the desired stability of the current
delivery. A delivery cycle that fits with
the government's budgetary cycle
permits securing full funding of the
delivery prior to the commitment to the
delivery. Thus the delivery can be made
as planned without budgetary influence.
Changes in future funding impacts only
future deliveries.

Individual incremental deliveries need

to be sufficiently small in cost. scope
and complexity to forego the safeguards,
reviews and formality associated with
the conventional development methods.
Otherwise, the five to eight year
conventional development cycle cannot
be broken. (18-24 months are

required for the formal reviews. A
similar amount of time is required for
documentation.)

Five formal reviews have been identified
under RDM. A one time Project

- Definition Review at the end of the

Project Definition Phase assesses

overall project plans and processes. It
gains the concurrence of all parties to
the project. At the beginning of the
delivery cycle the sponsor's :
Configuration Control Board holds a
Requirements Review to baseline the
requirements of the current delivery.
This review achieves concurrence among
all parties as to the established"

‘requirements for the delivery. A

Delivery Commitment Review is held

~ early into each delivery cycle to

demonstrate understanding of the
requirements and general readiness to
complete the delivery. This review
covers system requirements, system
design, implementation plans, costs,
schedules and risks. Near the end of
each delivery cycle a Delivery Pre-Ship
Review is held to establish readiness to
undertake system installation,
integration and test at the user's site.
Long lead time instaliation items may be
shipped and begun installation prior to
the Delivery Pre-Ship Review. This
review covers design and
implementation status, testing
thoroughness and results, plans for
testing training, operations,
maintenance, costs and schedules. The
delivery culminates with a Delivery

" Transfer to Operations Review which is
-held by the sponsor's Configuration

Control Board. This review serves as a
system acceptance review for the
sponsor and user.

The RDM approach to documentation
emghasizes supporting usage and
sustainment of the system. Documents
evolve with increasing content as the
system evolves, Documents are
delivered as they become available or
just in time of need. They reflect the "as
built" system. Document re-work
within a delivery cycle is minimized.
Precise document suites are tailored by
the specific needs of the project.

115 11th Annual National Conference on Ada Technology 1993

o3 <

—m Em W O 2 O

Project planning documents may

include: Project Pian, Hardware
Management Pian, Software Management
Pian, Safety Plan, Product Assurance
Plan, Integrated Logistics Plan, Review
Plan, Documentation Plan, Configuration
Management Plan, Integration and
Testing Plan, Security Pian and

Shipping Plan,

Documents delivered within each
delivery may include: Requirements
Specification, Integrated Support Plan,
Segment Requirements Specification,
Segment Design Document, Interface
Control Document, Database Design
Document, Site Concurrence
Memorandum, Integrated Test Plans and
Procedures, Test/Analysis Report,
Security Evaluation Report, Installation
Drawings Package, Release Description
Document, User Manuals and Training
Materials. Figure 3 indicates the
progression of the formality of the
delivery dependent documents.

Testing under RDM emphasizes
satisfying the user. Its key outcome is
problem identification. Results of
testing are used to determine what is
actually included in the delivery. That
is, if testing has shown that some
segment of the delivery is not
operationally viable then its delivery is
postponed until a later date or until the
next delivery. Therefore, all deliveries
are made on time, albeit they may not
provide the full functionality as
originally planned.

A major testing principle is that to
continue to test a system within a single
environment using a fixed set of
procedures eventually produces
diminishing returns as fewer and fewer
problems are identified. Exhaustive
testing is recognized as impossible to
achieve. Once the problem time curve
begins to level off the efficacy of testing
is increased by changing the focus or the
environment. This is depicted in Figure
4,

The initial focus is on integration testing
employing data flow threads as a basis
for test procedures. Once the system is
working as a unit the testing emphasis
may be shifted to requirements testing
to assure that all the individual

functional capabilities work as expected.
Another environment is generated with
tests that emphasize operational strings
or scenarios that emulate the anticipated
use of the system. Changing the location
of the testing from the laboratory to the
users' site where each set of previously
used test procedures are repeated
creates further test environments.
Security testing, acceptance testing and
user training provide additional
environments. ‘

Finally, the use of the system for
operations by real users provides the
final test environments. For this
reason, the first users must be
considered as part of the test team. No
amount of formal testing is going to
eliminate the first users uncovering
problems. Testing needs to minimize the
number of problems found by users.
However, real use is essential to
uncover performance problems, system
weaknesses, bottlenecks, and strain
points. On this basis the use of the
system for another application or

" radically different operation will

constitute a new environment and will
undoubtedly result in a flux of
previously unidentified problems.

Experience with Ada based projects
using RDM has shown that 45% of the
implementation time in each
incremental delivery is spent on
preliminary and detailed design
activities. Coding and unit testing
constitutes 25% of the time and
integration and test takes the remaining
30%. This contrasts with the
distribution of 20%, 55% and 25%,
respectively, that typically has been
experienced with the conventional
development process.

11th Annual National Conference on Ada Technology 1993

116

117

The greater time for design has been
attributed to the additional effort
required to define all data types and
develop package specifications. Ada,
‘being a strongly typed language,
requires more time to define and
negotiate all required data structures -
and type definitions. Less time is
required for coding under Ada and ROM
because most sub-program interfaces
are negotiated and agreed upon during
the design phase. This carries over to
testing where very little test time is
spent dealing with data type errors and
stb-program interface mismatches.
The rigid specification of software
program elements (i.e. procedure
argument lists, data types and external
package references) minimizes
problems with their usage by the
various members of a software
development staff.

An Ada development environment has
proven most beneficial in conjunction
with RDM. The Rational Ada
Development System provides a 2167A
document generator, configuration
management system, languzge sensitive
- editor and Ada compiler. The
development environment assists the
developer with views of data type
definitions, interdependency
information, syntactic and semantic
assistance, and incremental compilation
support. Code is first generated and
compiled on the Rational. After

\ achieving a successful compile the code

is transferred to the target environment
for unit testing. This transfer is
managed automatically by the Rational.

RDM necessitates managing several
configuration baselines. The current
deployed baseline and the current
development baseline are necessary.
Frequently, an update to the deployed
baseline will be in the works, as well.
Maintaining previous operational
incremental delivery baselines
constitutes good practice. The Rational
provides good automated support to the

t1th Annual National Conference on Ada Technology 1993

essential configuration management
function.

Several features of the Ada language have
been exploited in conjunction with RDM.
Taking advantage of the inherent
readability of Ada code, emphasis has
been placed on developing Ada package
specifications containing actual Ada code,
rather than pseudo-code. This avoids
the step of translating the pseudo-code
into actual Ada code. Also, ‘
interdependencies of the compilation
units are rigorously defined. Thus, any
undesirable dependencies or
architectural problems can be identified
and corrected in the desigr: phase rather
than later during coding cr integration.
Ada provides extensive error checking
during compilation. This avoids having
to find many errors during unit testing
on the target system. Finally, extensive
use of modularity and common libraries
permits significant code re-use from
delivery to delivery. This provides the
ability to extensively rework

applications with a minimum of code
change.

Summary

Where the tenets fit, RDM has proven to
be far superior to the conventional
developmental methodology. RDM is
flexible and responsive to the exigencies
of real projects. RDM is essentially a
design-to-cost process in which users,
sponsors, and developers must reach
consensus on priorities and scope for
each incremental delivery. The result
should be the best capability available
for the available funding -- financiaily
efficient and effective.

RDM's has been shown to b= highly |
responsive to programmatic and |
technical changes. Even the obsolescence :
of system elements during the !
development life cycle can be
accommodated with replacements during
the succession of deliveries. RDM is

K o b,

 responsive to the user through its

involvement of the user throughout the
development cycle. The overt attention
on requirements feedback based on
operational use assures user
satisfaction.

ROM and Ada have proven to be
compatible for the development of
software intensive systems. Ada's
modern software engineering features
facilitate the short implementation
period of the incremental deliveries
essential to RDM. Use of an Ada
developmen, environment has
contributed to the successful
employment of RDM.

JPL has used RDM on seven software
intensive system development projects
to make 30 successful incremental
deliveries. These projects include
command centers for the USAF Military
Airlift Comme:.d, US Transportation
Command, US European Command and US
Anny Hzar!quarters, RDM has also been
used to develop war game simulations

for the US Army.

So far, JPL has been the sole
practitioner of RDM. It remains to be
seen how RDM can be used within the
government's competitive acquisition
guidelines. A task work order contract
may be a potential viable contractual
candidate. Still, it would appear that
changes in Military Standards are
necessary to recognize development
methods such a RDM. These include the
areas of reviews, documentation and
testing.

Lynn G. Gref

Manager, Defense Program

Jet Propulsion Laboratory

Mail Stop 79-6

4800 Oak Grove Drive

Pasadena, California 91109-8099

Dr. Gref has in excess of 25 years
experience in the systems engineering
and development of systems for the
Department of Defense and other
government agencies. He has managed

11th Annual National Conference on Ada Technology 1993

the implementation of several software
intensive projects employing
conventional, prototyping and rapid
development methodologies. He has been
a contributor to the evolution and
articulation of RDM at the Jet

Propulsion Laboratory.

William H. Spuck [ii

Manager, Commercial & Civil Programs
Jet Propulsion Laboratory

4800 Ozk Grove Drive

Pasadena, California 91109-8099

Dr. Spuck has in excess of 30 years
experience in systems engineering and
program management. All of the
systems developed using RDM at JPL
have been under Dr. Spuck as the
Program Manager. He has provided
direction and articulation to the
development of the rapid development
methodology. :

118

1.00 [~

075 [

0.50 [~

025 [

NORMALIZED CONTRACT VALUE

1) 3 4 5 6

. ’

TIME AFTER PROJECT START - YEARS

Figure 1 - Normalized Budget History of a Pfoject

PHASE , TIME

1. PROJECT DEFINITION [3 1

PRELIMINARY DELIVERY 1 37
OP & SUSTAIN

PRELIMINARY DELIVERY2 | 27]
OP&SUSTAIN SR T I

DELIVERY 1 OF 57
OP & SUSTAIN

DELIVERY 2 OF ‘ 2-7
OP & SUSTAIN

DELIVERY 3 OF 27
| OP & SUSTAIN

Figure 2 - Generic Project Life Cycle Using Rapid Development Methodology

119 11th Annual National Conference on Ada Technology 1993

[P R e

: R N I DS SN S aas = .
N

DOCUMENT CATEGORIES EARLY DELIV | MID DELIV LATE DELIV
REQUIREMENTS SPECIFICATION FUNCTIONAL EUCURITY & -ILITIES

REQUIREMENTS| PERFORMANCE
DESIGN DOCUMENTS - REVIEW MTLS & | DETAIL DESIGN| DETAIL

o PKG SPECS DESIGN
INTERFACE CONTROL DOCUMENTS| FUNCTIONAL | PERFORMANCE] -ILITIES
4 REQUIREMENTS ,

AS BUILT SPECIFICATIONS DRAWINGS DRAWINGS | DRAWINGS

& LISTINGS & LISTINGS & LISTINGS
USER MANUALS BASIC ADVANCED EXCEPTION

' FUNCTIONS FEATURES HANDLING

TEST DOCUMENTS PLANS & PROCEDURES | ACCEPT-

OPERATIONS | & FUNCTIONS | ANCE

~ LOGISTICS DOCUMENTS INITIAL PLANS | PLANS MANUALS
Figure 3 - Progression of Documentation Formality
PROBLEM
DISCOVERY
SHIP TO
USER SITE SECURITY TESTING
OPERATIONAL TESTING
REQUIREMENTS TESTING
INTEGRATION TESTING
OPERATIONAL TESTING
REQUIREMENTS TESTING
INTEGRATION TESTING

| Figure 4 - The Effect of Testing in Multiple Environments

11th Annual National Conference on Ada Technology 1993

TIME

120

A FARMER'S GUIDE TO OOA:
HARVESTING REQUIREMENTS

Jeffery D. Boyken
Coleman Research Corporation, Huntsville, Alabama

Brian K. Mitchell |
Coleman Research Corporation, Huntsville, Alabama

Michael J. O'Connor ‘
Coleman Research Corporation, Huntsville, Alabama

Traditionally there has been a
disconnect between software requirements
and software design in large defense
systems. The problem begins with the
major product of the requirements phase,
the Software Requirements Specification
(SRS). Typically this document is intended
for management and the customer not the
design engineer. This paper describes a
process to bridge the gap between the
requirements phase and the design phase.
This process is called a requirements
harvest. The requirements harvest is a
formal process for handing over
requirements form the requirments
engineers to the design enginears.

~ " Traditionally there has been a

disconnect between software requirements
and software design for large defense
system using DoD-STD-2167A. There are
several causes for this problem. The
problem begins with the major product of
the requirements phase, the Software
Requirements Specification (SRS). This
document is intended for management and
the customer not the design engineer. As
‘more complex systems &are build, it
becomes increasingly difficult to hand over

RN T

large sets of requirements to the design
engineer. :

Many assumptions are made as
requirments are defined. In general, these
assumptions are poorly documented.

" There are of course other causes for

breakage between the :equirements phase
and the design phase of a large software
development project. This problem has
been recognized by the Software
Engineering Institute (SEl) in their

- Contractr: Maturity Model (CMM) [HUM87].

- The requirements harvest process
was defined to recolve the requirements
hand-over problem. The term
‘requirements harvest' is used because the
process of performing requirements
analysis is like planting a crop and tending

_it. While you may have grown a bountiful
‘crop (complete requirements), if youdo not

effectively harvest the crop it will rot in the
field. Frequently a detailed requirements

‘crop is produced, but the design engineers

fail to utilize the yield. Instead, they hurry
to the grocery store and pickup what they
can find leaving the requirements to ruin.
The requirements harvest concept
will work with most requirements analysis
and design methods. However, the

process works particularly weil with an
object oriented approach. The authors.

used the Coad-Yourdon method for object

121 11th Annual National Conference on Ada Technology 1993

oriented analysis (OOA) [COA91] and a
modified Buhr and Booch method for
object oriented design (OOD) [BOO91].
The system was implemented in Ada which
-does not suppert full object oriented
programming (OOP). This paper describes
the harvest process in the context of the
aforementioned methods.

First, this paper defines the
requirements hand-over problem as it
“relates to large DoD pregrams. Next the
‘harvest process is defined in detail,
followed by the authors experience in
applying the process. Finally, the benefits
are presented. :

Many problems face today's
software development teams. Each time a
software development team solves one set
of problems, another set is created. The
following paragraphs summarize problems
encountered as the software engineering
process matures.

Two major problems have
prevented design engineers from
designing a system that satisfies the
customers expectations. First,
requirements are traditionally incomplete
and incorrect. Second, when the
requirements are detailed and complex, as
they are with large systems, the
development process does not ensure that
the design engineers compietely

understand the requirements. The:

combination of these two problems can be
devastating. When a large number of
errors exists in a large software
requirements specification, it is nearly
impossible to utilize it. Because of these
problems, design engineers are forced to
develop their own requirements. The
result is a design that does not satisfy
anyone's expectations, except possibly the
design engineers. :

A well defined software
requirements analysis process assists the
requirements engineer in defining

requirements that have minimal errors. As

a result the detail of the specifications will
increase. Therefore, in solving the first
problem (excessive requirements) the
second problem (passing requirements on
to the design engineers) is magnified.

If a good specification is developed
for a large complex system, some errors
will still exist after the software
requirements review. If the design
engineers do not have a thorough
understanding of the specification they
cannot identify requirements errors as they
progress into design. As a result, design

.errors will be introduced because of

misinterpreted requirements.
Once the software development
team has developed complete

requirements, more problems are

encountered. In a waterfall approach,
software requirements are developed early
in the program and never updated. After
the initiation of the design phase, little effort
is expended to keep the requirements up
to date. As a result, the requirements
glmost never represent what is designed.

To summarize the problems,
improving requirements specification
increases requurements detail and
complexity. These detatlgd and complex
requirements are difficult to pass on the
design engineers such that they can satisfy
them and identify remammg errors. In
addition, these requurements are not
maintained through the design phase.
Recognizing that there is no silver bullet for
software engineering, the requirements
harvest process resolves several of these
significant problems.

The requirements harvest process is
a formal three step process. As a formal
process the harvast should be documented
by ferms (similar to walk-through forms).
These forms include checklists that aid ths
reviewers in re.iewing the pertinent data.
The steps of the harvest are very similar to

11th Annual National Conference on Ada Technclogy 1993

122

structured walk troughs done in the coding
phase. Weber's Key Practices of the
Capability Maturity Model describes many
of the processes that need to be performed
in software development [WEB91] of which
the requirements harvost is just one.

Step 1 v
The softwaie specification review
(SSR) initiates hand-off of the software
requirements from requirements engineers
to design engineers. At the SSR the
design engineers get a thorough overview
of all the requirements for each CSCI
(Computer Software Configuration Item).
The SSR provides a general overview of
the requirements and is not intended to
discuss each requiremerit in detail. For a
large system, a general requirements
overview (as called-out by MIL-STD-
1621B) requires several days to complete.
At the completion of the SSR a
requirements harvest is initiated to ensure
that the design engineers are intimately
knowledgeable of the requirements they
are designing toward. The requirements
harvest is initiated by the lead design
engineer. The lead design engineer
assigns the requirements objects, from the
object-oriented requirements model, to
each of the design engineers.
Requirements are harvested on an object-
by-object basis. After assigning objects,
the lead requirements engineer schedules
a series of requirements reviews, or

harvests, with the design engineers. Each .

harvest is supported by:

1) the lead requirements engineer,

2) the requirements engineer
responsible for specification of the
requirements object,

3) the lead design engineer, ‘

4) the design engineer responsible for
designing-to the requirements
object.

. These harvests allow the requirements

engineers to review in detail the

requirements that the design enginee'r is

responsible for satisfying.

The basic premise of the initial
harvest review is for the requirements
enginesr to explain the' requirements to the
design engineer. He will have to resolve
any anomalies (ambiguities, errors, and
inconsistencies) that exist. Each anomaly
is identified through the initial harvest.
Additional specification may be required to
permanently resolve the anonolies. The
requirements engineer leads the initial
harvest. In the harvest, the requirements
object is discussed in detail as well as its
relationships to other requirements objects.
The initial harvest includes a detailed walk-
through of the following specifications:

« attributes [COAS1]
- for each "attribute: description,
purpose, accuracy, range, .

precision, traceability

- class unique, object unique,
generalizations, and
specializations

* services [COA91]

- for each service: description,
purpose, inputs, outputs, timing,
traceability

- class unique, object unique,
generalizations, . and
specializations

. - implied services (create, delete,
get, set)
“e relationships to other objects

- for each instance connection

[COAS1]:. attributes required,
purpose for the requirement

- for each message connection
[COA91]: services supplied,
services requested

- for each part and whole
relationship{[COA91]: relationships
to other objects

During the initial harvest, the
requirements engineer is responsible for

completing software change requests

123 11th Annual National Conference on Ada Technology 1993

A
\
'

1

-

ES BN Em =

(SCRs) for all requirements errors
identified in the review. The initial harvest
ensures all requirements have been
reviewed in detail for design
considerations. The lead requirements
engineer reviews all the SCRs generated
and corrects all approved SCRs. When all
the SCRs are closed, a new object
oriented requirements model is released.
After the new model is released, the lead
requirements engineer schedules a
second series of reviews to discuss
changes.

Step 2 '
Once the design engineers have
completed their preliminary design, Ada
Buhr diagram specifications and PDL
package specifications, the design
engineer walks the requirements engineer
through the design specifications. This
'second harvest identifias additional errors
in the requirements and ensures that the
requirements are satisfied by the design.
Again, the requirements engineer is
responsible for completing all SCRs
against the requirements. Once the SCRs
are closed the requirements engineer
discusses the changes with the design
engineers. The preliminary design review
(PDR) is held following the closure of all
SCRs related to the preliminary design
level harvest.

Step 3 -

The requirements harvest process is
compiated prior to the critical design
review (CDR). When a design engineer
has completed his Bunr diagram bodies
and Ada PDL bodies, he meets with the
requirements engineer. The design
engineer walks the requiremants engineer
through the design specification to identify
any requirements errors and to ensure that
the requirements are satisfied. Again, the
requirements engineer is responsible for
completing all SCRs and cocrdinating their
resolution with the design engineer. The

11th Annual National Conterence on Ada Technology 1993 124 l\

CDR is held following the closure of all
SCRs related to the detail design leve!

harvest.

The authors have used the

requirements harvest on a large distributed

real-time defenise system. After the SRR,
the lead dssign engineer created a design
architecture based on the requirements
model. Individual design engineers were
then assigned to each requirements object.
The harvest process was initiated following
the assignments. The harvest was the first
activity of the preliminary design process.
The harvest requires a form to
document and guide the processes. The
inclusion of this form is the result of the first
use of the process. When the harvest was
first conducted only informal notes where
keep by the lead requirements engineer
and lead design engineer. The informal

notes did not provide adequate visibility -

into the process.
This project marked the first time the

-software developmeit team performed

object oriented requirements analysis.
While all of the development team received
OOA training, only the requirements
engineers were experts in the method and
notation. The requirements harvest
enabled the requirements engineers to
explain the OOA notation in detail with the
design engineers. Thus the harvest eased
the paradigm shift.

Due to program constraints, the
requirements analysis process was not
allocated adequate resources.
Additionally, systems engineering did not
produce a complete set of systems
requirements in time to "seed" the software
requirements process. As a result, the
software requirements were incomplete.
These problems were identified before the
requirements harve§t. However, the
harvest provided metric data, SCRs, to
make this problem more evident to
management.

i

. —~

Management supported the harvest
process, but did not commit adequate
resources. The requirements model
contained approximately 100 objects. The
design team consisted of 7 engineers
including the design lead. Management
expected the harvest to be completed in
two to three days. Initial estimates by the
software engineers indicated that it would
require 10 days. The harvest actually took
3 weeks to complete. with the average
object requiring about one hour of
discussion. :

Over 100 SCRs were generated
during the harvest. This number was much

larger than expected. The large number of

SCRs was attributed to several factors.

1. Incomplete system requirements

2. . Inadequate resources to develop

the requirements

3. Limited experience with OOA
We anticipate that a program with better
system requir¢ ments and more resources
spent cn analysis would not generate as
many SCRs. On this particular program,
the errors were found before the design
phase. This significantly reduced the cost
of resolving the anomalies. Without the
“huivest, most of these errors would not
have been found until later phases of
development, thus resulting in increased
development cost and schedule overruns.

Many DoD systems being
developed today are very large and
complex. For development methodologies
to be successful on thess programs, they
must produce detailed requirements
specifications. These detailed
requirements specifications must be
managed carefully to ensure that:

1) design engirieers understand the
requirements specification.

2) the design process identifies
requirements errors,

3) the requirements and design remain
consistent.

- |
N !
|

I

The requirements harvest process
has been defined to manage these
requirements issues. The requirements
harvest is successful because it formally
ensures: .

1) requirements are understocd by the
design enginears before preliminary
~ design begins,
2) requirements include the design
engineers perspective, :

3) requirements are incrementally

verified through the design process.
For the farmer of the future to be

successful he must improve his processes.

He must utilize new technologies to
produce larger crops with less resources
and with increased yields. An efficient
requirements harvest is essential to
realizing increased yields. :

References
[BOO91] Booch, Grady, Object Oriented
Design With Applications, The
Benjamin/Cummings Publishing

~ Company, Inc., Redwend City, Californie,

1991. _

[COA91] Coad, Peter and Edward
Yourdon, Object-Oriented Analysis,
Second Edition, Yourdon Press,

- Englewood Cliffs, New Jersey, 1991.
[HUMB87] Humphrey, Watts S., W. L. -

Sweet, A Method for Assessing the
Software Engineering Capability of
Contractors, Software Engineering
Institute, Pittsburgh, Pennsylvania, 1987.
[WEB91] Weber, Charles V., Mark C.
Paulk, Cynthia J. Wise, James V. Withey,
Key Practices of the Capability Maturity
Model, Software Engineering Institute,
Pitisburgh, Pennsylvania, 1991.

Biographies
JEFFERY D. BOYKEN is currently
employed as a Software Engineer for
Coleman Research Corporation in
Huntsville, Alabama. He holds a
Bachelors of Science in Engineering

| Physics from Murray State University. He

125 11th Annual National Conference on Ada Technology 1993

/!

FE)
PoCE

specializss in Dbject Oriented softwars
requirements analysis for large distributed
-real-time systams. Mr. Bovkan diives a
1987 Buick Grand National.

BRIAN K. WITCHELL is currently employed
as a Software Ttnginesr for Coleman
Reseurch Corporation in Huntsville,
Alabema. He holds a Bachelors of
Science in Computer Sciencs from Murray
State University and a Masters of Science
in Computer Science from The University
of Alabama in Huntsville. {le specializes in
svstem and software requirernents enalysis
for large distributed reai-time systems. Mr.
Mitchsll drives a 1955 Ford Thunderbird.

MICHAEL J. O'Connor is currently
employed as a Software Engineer for
Coleman Research Corporation in
Huntsville, Alabama. He holds a
Bachelors of Computer Enginesring from
Auburn University and a Masters cof
Science in Computer Science from The
University cf Alabama in Huntsviile. He
specializes in the development of largs
distributed real-time systems in Ada for
defense applications. Mr. O'Connor drives
a 1975 Oid. mobile Delta 88 Roval
convertible. ,

11th Annuai National Confereuce on Ada Technology 1993

Ada PERFORMANCE ISSUES
IN REAL-TIME TRANSPUTER ENVIRONMENTS

Richard M. Plishka
Compnting Sciences Department
University of Scranton
Scranton, PA 18510
717-541-6111
email: plishka@jaguar.uofs.cdu

ADST?
This asticle relates the expirierces of a project
undertaken at the Chemics! Research, Development and
Engineerin- Center of the U.S. Army. The oijl.:tivc of
the project was to determine the feasibility of a frcal .
time Ada implementation on a transputrr-based |
embcdded system. Benchmarks were pcrfo:mcd: in Ada .
and OCCAM on the 80:86 aud TS0D plotfcrms } This
report contains timing compaiisons of the Whatstone -
and PIWG benchmarks on these platforms.

INTRODUCTION

The Detection Directorate of the Chemnical
Research, Development and Engincering Center
(CRDEC) is developing an embedded system which
utilizes the INMOS T800 Transputer. Although there
arc several programming languages availatle fo
systeras developmert on the Transguter, one of the most
widcly used is OCCAM. OCTCANM's popularity can be

attrituted to the fact that it is a high level language
desigried to express parallel algorithms and their
implementation on a network of processing cormponents.
In addition, the Transputer may be considered an
OCCAM machine; OCTAM provides the efficiency
equivalent to that of programminy a conventional
computer at the assembly language level [INMOS 88].
Howeves, given the Congressional Ada Mandate (Public
Law 101-511 - Sec. 8092, and Public Law 102-172,
Sec. 8072), Ada has been designated the systers
devzlopment language of choice for Department of
Defense software projects. The objective of this project
was to evaluate the Aisys_037 Ada compiler for the
Transputer, currently ihe only commercially cvailable
Ada compiler for the Transputer, in oxder to determine
the feasihility of implementing the required scfiware in
Ada. '

The general approach that was taken for this
project was to run a series of software benchmark tests

conforming to figure 1.

_ 80x8¢ - DOS $8.0 TRANSPUTER
e
! BENCHMARK Alsys Ada Meridian Ada Alsys Ada Ocram
Whatstom X X X X
FIWG X X X
I Hartstone X X X

figare 1 ~ Test Plon

127 11th Annual National Conference on Ada Technology 1993

The Whetstone benchmark program [Curnow
76] was developed to compare processing power for
scientific applications. The program goes beyond
messuring pure floating point performance (flops’) by’
including features found in ‘typical’ scientific
epplications such as: conditional jumps, array indexing,
integer arithmetic, ptocedure calls, and evaluation of
elementary fuactions. The PIWG test suite {Pollack Y0,
Roy 90] contains a serics of experiments that assist in
the evaluation of processor performence, clock
resolution and compilation efficiency. Hartstone
{Weiderman 89] is a benchmarking tool for evaluating
hard real-time performance. ‘

The initial plan was to test these software
berichmark systems across the Intel 80x86 and INMOS
T800 platforms using the Alsys Ada compiler for 32-bit
POS, the Alsys Ada compiler for the Transputer, and
the Meridian Ada compiler for 32-bit DOS. The
quantitative results from these tests would then te vsed
as the basis for conclusions and recommendations.

TECHNICAL DISCUSSION -

Host system - Gateway 2000: 80486DX/33Mi1z,
EISA, 8SMB RAM

CSA Transputer board for PC:
T800/20MIz, 4MB RAM

Transputer -

Cnce the DOS executables were generated,
timings were meesured on the 386/20MHz, 386/33MHz,
and 486/33MHz systems. The 386 systems were
equipped with 80387 math copracessors.

The systeins sofiware used to support the
project consisied of:

DOS 5.0

Alsys Ada - version 5.1 - 32 bit DOS compiler

Alsys Ada_037 - versiun 5.4.2 - Transputer compiler
Meridian Adas - versicn 4.1.1 - 32 bit DOS compiler
INMOS Oucam Toclset - version D7205

Early in the project, the Meridian compiler wes
abandonud due to the volume of compile-tinie and run-
time ecrors encountsred with code which was
successfully tested in the Alsys environment. Time did

E not permit debugging and rewriting a large volume of

HARDWARE/SOFTWARE code. Therefore, the revised test plan matrix conforms
| to figure 2.
g The hardware system which was used to

develop and test the benchmarks consisted of:
Alsys Ada - 32 bit DOS Transputer
. BENCIIMARK 80386/20MHz 80386/33MH: 80486/33MHz Alsys Adc Occam
Whetstone X X X X X
PIWG X X X X

Hartstone X X X X
g figure 2 - Test Plan - revised

categories of contemporary scientific calcviations, In
pacticular, it uses smal! arrays, no muiti-dimersional
arrays are employed, it is dependent on the speed of
floating point operetions, and the number of elementary
function evaluations is probably atypical of current
programming models [INMOS 91, n259]. Despite thess
observations, it still provides a legitimate baseline for
the evaluation raquired in this project. Whatstone was

ACTIVITIES

WHETSTONE The Whetstone benchmark has
been considered somewhat a standard berchmark for a
number of years. Unlike the Drystone benchmark,
Whetstone i3 intended to simulate ‘typical’ scientific
applications through its utilization of & variety of
routines. It does, however, fall short in several

11th Annual National Conference on Ada Technology 1993 12€

successfully coded and tesu':d.in both Ada and Occam,
and run on the 80x86 and T8CO piatforms.

BIWG The Perfermance Issucs Working
Group of the ACM has made available a series of Ada
benchmarks which can be used in the evaluation of Ada
compilers across a range of hardware platforms. The
test suite assists in the evaluation of execution titne and
compilation time. It was determined for this project
that the compilation time tests were of little valuc at
this stage in the project; therefore, emphasis was piaced
on the evaluation of execution timings. In particular,
there are four test areas that made up the critical area of
performance testing. They are:

1. Clock Resoiution (A000090) This test
illustrates CFU clock resolution available to
Ada.

2. DELAY Resolution (YO00001) Measures the
resolution of the DELAY feature of Ada.

3. Procedure Call Overhead (P000005/6/7)
Measures procedurs call overhesd time in Ada.

4. Hennesy Tests (A000094A-K)Series of tests
which measure performance in 8 variety of .
areas includirg: recursion, integer and real
matrix multiplication, and sorting (data
movement).

These tests were successfuily performed in Ada
on both the 80x86 and T800 platfcrms. '

HARTSTONE The Hartstone benchmsrk is a
set of timing requirements for testing a system's ability
to handle hard real-time applications [Weiderman 89).
The complete Hartstone benchmark consists of five
categories of tests: PH Series, PN Series, AH Series, SH
Series, and SA Series {Weiderman 89, p5]. The only
test successfully implemented in Ade to date is the PH
Series. This test provides feedback for a set of tasks
which are periodic and harmonic.

The PH Series was successfully iested on the
T800 platform in Ada; however, the 80x86 DOS tests
failed to provide reliable results. Best estimation is that
as the period in milliseconds began to spproach the
clock resolution available through the Ada/DGS
environment, the system would "hang"; apparently
attributable to DOS. Therefore, the quality of
comparable 80x86/T800 results was compromised.
Because of deadline constraints, it was determined that
the Hartstone benchmarks could not be successfully
implemented and iherefore omitted from this report.

ERCCEDURES

All behchmark development, testing and
implementation was perfcrmed on the hardware and
software previously noted. Once the executables were

" gererated, testing was conducted according to figure 2 .

All compilations and binding/linking optimization
options are contained in APPENDIX A.

RESULTS

Test results are contained in figures 3 - 5. A
key point worth noting is that the Ada/Transputer
environment is, in effect, a runtime environment. That
i3, the execution of the Ada generated code is
supervised by the ISERVER. This runtime environment
does rot permit the Ada code access to the high priority
one microsecond clock rezolution aveilable on the T800.
The OCCAM environment, however, does permit
OCCAM code one microsecond access. Therefore,
perhape one of the most interesting charts is the
WHETSTONE comparison. The other charts, howsver,
do provide valuable information on the comparison of
Ada executables on 20MHz and 33MHz processors
utilizing different architectures.

CONCLUSIONS

The CBMS under development by CRDEC
requires one microprocessor feature that is not
supported by the 80x86 line of processors; that is, the -
requirement to have < 3 microsecond resolution. The
dilemma highlighted by this study concludes thst the
curmrent Ada enviroaments available fall short of

" providing this feature on the T800, even though it can

be supported via OCCAM.

A variety of options exist in the imrsui! of a
sclution to this problem. Perhaps the most interesting
would be that of developing the CBMS software

" support system using both Ada and OCCAM. This

option may satisfy both the timing consteaints of the
CBMS project as well as the Cengressional Ada
Mandate. One item missing in permitting this
recommendation is evidence of ithe real-time timing
requircments of OCCAM. Comparative data, such as
that provided in this report, illustrating OCCAM's
statistics in similar PIWG and Hartstone

129 11th Annual National Conference on Ada Techunology 1993

o

K
4
&

implementations would be helpful. Such data could
provide valuable insight as to whether or not CCCAM
may be & viable alternative or supplement to the Ada
development environment.

ACKNOWLEDGFENTS

This work was supnorted by the Chemical
Research, Development end Engineering Center under
the auspices of the U.S. Army Research Office
Scientific Services Program adminis:ered by Batteiie
(Delivery Order 251, Contract No. DAAL03-91-C-
0034). '

)
', 2

Borger, M., Klein, M., Veltre, R.
Real-Time Software Engineering in
Ada: Observations and Guidelines
Technical Report CMU/SEI-89-TR-22,
DTIC: ADA219020,

Software Eugineering Institute,
Camegie Mellon University,
Pittsburgh, PA 15213, Septerber,
1989 ‘

[Borger 89)

[Curnow 76] Cumnow, H.J., and Wichmann, B.A.
A Svnthetic Bznchmark
Computer Journal 19 (1), 4349,
Jsnuary, 1976

[Donohoe 90] Donohoe, P., Shapiro, R., Weiderman,
N.
Hartstone Benchmark User’s Guide,
- Version 1.0
Technical Report CMVJ/SEI-90-UG-1,
Software Engineering Institute,
Carnegie Mellon University,
Pittsburgh, PA 15213, March, 1950

[INMOS 88] INMOS Limited
OCCAM 2 Reference Manual
Prentice Hall, New York, 1988

{INMOS 89] INMOS Limited
Transputer Applications Notebook -
Systems and Performance
Redwood Press Ltd., Melksham, 1989

[INMOS 91} INMOS Limited
OCCAM 2 Toolset
S$GS-Thomson Microelectronics Inc.,
Colorado Springs, 1991 '

{LRM 83] United States Department of Defeasc
Reference Manual for the Ada
Programming Language
American National standards Institute,
New York, 1933
[Pollack 90] Pollack, R.H., and Campbell, D.J.
Clock Resolution and the PIWG
Benchmark Suite
Ada Letters - Special Edition on Ada
Performance Issues X(3), 91-97, 1990

[Roy 90] Roy,D., end Gupta, L.
PIWG Analysis Methodology
Ada Letters - Speciul Edition on Ada
Pexformance Issues X(3), 217-229,
1990

[Weiderman 89] Weiderman, Nelson
Hartstone: Synthetic Benchmark
Requirements for Hard Real-Time
Applicaiions
Technical Report CMU/SEI-89-TR-23,
DTIC: ADA21932s,
Software Engineering lnstitute,
Carnegie Mellon University,
Pittsburgh, PA 15213, June, 1989

Richard M. Plishka is an Associate Professor in the
Computing Sciences Department. His research interests
include Ada development environments and real-time

parslicl systems. He is a member of the ACMend

SIGAda.

11th Annual National Conference on Ada Technology 1993

131

1

TARGET

Ada - 386 20MH2 (A000093)
Ada - TEOO/20MHz (ACOOLA3)
OCCAM - T800/20hH2
Ada - 385/33MH2z (AOGOCS3)

" Ada - 438/33MHz (AC00DS3)

CLOCK RESOLUTION {AC00030)

Alsys Ada
System Time (seconds)
Tronsouter (T800-20/20MHz) 9.0600€1035155250
30386/20MHz (DOS) 0.000054432187500
80386/33MMHz (DOS) 0.000854452187500
80486/33MHz (DCS) 0.000854492187500
WHETSTONES
Kwing =~ RunTime File Size
(in bytes)
1010 126944
1541 - 55890
3655 9646
2078 126944
5489 126944

** Kio Whetstone instructions P«Seoondv

Flle Type

BTL
.BTL

EXE

KWIPS **

r

W 6000

w o 5000

= Z 4000

= 8 3000

S ..

9 0

x ~ OCCAM-
386/20MHz T800/20MHz = T800/20MHz 388/33MHz 486/33MHz
(A000093) (A000093) (AG00093) (A0000S3)

* RunTime File Size

140000

386/20MHz
(A000093)

Ada -
T8C0/20MHz
(A000093)

o e

OCCAM - Ada -

T800/20MHz 386/33MHz
(A000083)

Ada -
486/33MHz
(A000093)

Jigure 3 - Clock Resolution/Whetstone Results

1th Annuzl National Conference on Ada Technology 1993

(Gung 152] OMI) Snsay isa] Asauuay] - p an3y

ZHINES
- 98y |

ZHNEE ZHINOZ ZHoZ

THNEE ZHINEE ZHWOZ ZHWOZ
-9BC | -69€ (] -00SLEY

-9t -9 [] -ocelL @ ‘ -9y B3
000
002 o
00’8 m
73
000}
00¢Cs
Wi S90b MPB00C0Y
sy s 4¥60000¥
€8l ST ¥60000Y
50 "o ¥50000Y
) 590 HY0000Y
L0 £50 ©¥30000V
Wi 280 IF60000V
€30 860 Qrea000v
160 9L0 OFB0000Y
190 y7 4 S960000Y
990 080 V¥00000Y
ZHHNOZ - 958 THWOZ- 0081 aisa
S}NSIY BPY - 818501 ASIUUDH

UK} G PouLciied - UORIUNS SUUBULIN
GAISUGHI NdD - WSIaLd sZng

8UR) GZ peusioied - (xayrhucs weed g57) 144
s2e0epy WOPUR; HG - YOS LORRBU| DAL
s20800u) Wopwras XG - BosKRang
eebonx WopLres HG - LOBOND

Ob Y0¥ ~ A XN ey

OFXOF - Adrarws xomp Je0nwy

UL, 05 PONOS - 2USeND Wb
aAINoss AOp) - 1081 10 SINC L

AN ABy - 00C'CY - SUSIINULS

vopdusesq we)

132

11th Annual National Conference on Ada Technology 1993

133

DELAY RE‘3OLUTION (Y000001)

Commanded Transputer (TB00-20/20MHz) 386/20MHz (DOS) 386/33MHz (DOS) -486/33MHz (DOS)

0.00087 0.00115 : 0.00174 0.00171 0.00171
0.00195 _ 0.213 000258 0.00256 0.00256
0.00390 0.00415 000427 0.00427 0.00427
0.09781 0.00808 0.00854 . 0.00854 0.00854
0.01562 0.01598 , 0.01630 0.01630 - 0.01630
0.03125 ' 0.03181 0.03174 0.03174 003174
0.06250 0.06280 0.06262 0.06262 0.06262
0.12500 0.12530 0.12525 - 0.12524 0.12524
0.25000 " .0.25024 0.25055 0.25055 0.25055
- 0.50000 0.50036 0.50031 : 0.50031 0.50031
* 1.00000 1,00030 g 1.00067 .
2.00000 ' 2.00024 2.00049
PROCEDURE CALL OVERHEAD
Alsys Ada - time in microseconds

Test Transputer (T800-20/20MHz) 386/20MHz (DOS) 386/33MHz (DOS) 486/33MHz (DOS)
P00000S 527 404 ‘ 1.63 0.84

PO0000E - 4.68 416 172 080

* PO00007 $.03 451 179 : 098

Procedure Call Overhead

Q6
5 5
_ 8 4
2 314
[v4 2
O 1rg n
. 2 o a Oatiinet S B b1 i i Mt %, .
~ P0G0005 P000008 P000007
B Transputer [386/20MHz M 386/33MHz KR 486/33MHz
(T800- (CCS) (COS) (00S)
20/20MHz)

Jigure 5 - Delay Resolution/Procedure Call Overhead

11th Annual National Conference on Ada Technology 1993

Nao

AFPPENDIX A
OPTIMIZATION

All code was compiled and linked taking advantage of optimizatioh:fea:urcs provided by each specific
development environment.

Ada - DOS .
Compiler - Alsys Ada for 32-bit DOS - version 5.1
Compile options - IMPROYE=(CALLS = INLINED
REDUCTION = EXTENSIVE
: EXPRESSIONS = EXTENSIVE)
CALLS = INLINED: Call will be inlined for subprograms that aren't directly or indirectly
" recursive in response to INLINE pragma. ‘
REDUCTION = EXTENSIVE: Performs analysis of intermsdiate program representation to eliminate
numerous run-time checks and removal of dead code. .
EXPRESSIONS = EXTENSIVE: Performs common subexpression elimination and additionel register :
optimization. ‘ :
Bind options - TIMER = FAST o
| TIMER = FAST: High resolution timer used for the implementation of the DELAY C
:‘ statement.
iAgg « Transputer
| Compiler - Alsys Ada for the Transputer - version 5.4.2
Compile options - IMPROVE=(INLINE = PRAGMA
‘ * REDUCTION = EXTENSIVE
! EXPRESSIONS = EXTENSIVE)
INLINE = PRAGMA: Same as CALLS = INLINED above.

P REDUCTION = EXTENSIVE: Same as REDUCTION = EXTENSIVE above.
| EXPRESSIONS = EXTENSIVE: Same as EXPRESSIONS = EXTENSIVE above.
Bind options - FAST_MAIN = YES, FAST TASK = YES
' FAST_MAIN = YES: Attempt to allocate the primary stack of the main program iu a low-
addressed area which could be mapped to the internal on-chip
memory of the Traasputer.

FAST_TASK = YES: Attempt to allocate the primary stack of the task in a low-addressed
arer. which could be mapped io the internal on-chip memory of the
Transputcr.
OCCAM
Comgiler - INMOS OCCAM Toolset - version D7205
Comgiler options - /a 8 ’h
/a: Prevents compiler from performing slias checking, and
prevents usage checking.
h8: Comnpile for T80 processar.
/: Produces code in HALT mode.
Linker options - /8 /h
A8: Specifics T800 as target processor.
/M Generates a linked unit in HALT mode.
Code Collector options: /t
A: Creates a bootable file for a single transputer.
Host file server: /se
fse: Terminates the server if the Transputer error flag is set.
. 11th Annual National Conference on Ada Technology 1993 134
e e L

Defense Software Repository System Panel

Moderator: Joanne Piper, DISA/CIM

Panelists: Marrea Riggs, Army
Patti Hicks, Defense Logistics Agency
Rob Rutherford, Air Force, Standard Systems Center
Jim Wheeler, Navy ' ‘

135 11th Annual National Conference on Ada Technology 1993

|
|
i
. i
.
i

Ada in Undergraduate Computing Education:
Experience & Lessons Learned

Moderator: John Beldler, Unlversity of Scranton

Panelists: Mike Feldman, George Washington Unlversity
Nick Delllio, Manhattan College

Jim Smith, Leymoye College :
John w McCormick, State Unlversity of New York

11th Annual National Conference on Ada Technclogy 1993 136

e

Progrémmlng | In the Large

~ Modgrator: Dr. Donald Mullikin, FAA

I
/

Panelists:

N

137 1ith Annual National Conference on Ada Technology 1993

3

Reuse Interoperability Group (RIC)

Moderators: Jim Moore, IBM
Dave Dikel, Applied Expertise, Inc.

Panelists: Eric Beser, Westinghouse
Linda Braun, MountainNet
Pam Arya, General Research Corp.
David Dikel, Applied Expertise

11th Annual National Conference on Ada Technology 1993 138

TRANSITION TO ADA: A CASE STUDY

Urban LeJeune and Murray Kirch
~ Stockton State College
. Pomona, New Jersey 08240

SUMMARY

This paper describes, in case study format,
the pedagogical change to Ada from Pascal at
Stockton State College. The transition was
started in the Fall 1938 semester. During that
semester Ada was introduced into the Operating
Systems and Programming Language Structurss
courses. The metamorphosis was complete in
the Fall 1991 semester with the adoption of Ada
in our Programming and Problem Solvitg I
course, which is based on the ACM CS1 guide-
lines.

The experience has proven to be pedagogi-
cally sound and enthusiastically supported by
both faculty and students. A key to the success-
fui transition was the initial introduction of Ada
at the senior level and subscequently incorporat-
ing the use of the language progressively lower
in the curriculum. The philosophy was based
upon the premise that you do not have to teach
upper level students how to program and, addi-
tionally, upper level students, after being ex-
posed to Ada, would become formal and infor-
mal tutors and laboratory assistants.

GENE BACKGROUND
Stockten State College is a moderately sized

liberal arts college located in Pomona, New Jer-

sey which is about twenty minutes to the Atlan-

tic City boaréwalk. The school has slightly over

- 5,000 full time equivalent students and offers

degrees in a variety of liberal arts and
professional majors. The Computer and Infor-
mation Sciences (INFO) program is domiciled

- in the Professional Studies Division. Profes-

sional Studies also includes Business Studies

- and a variety of health related programs. The

INFO program supports approximately 125
majors and has eight full-time and one half-time
faculty membcrs.

The INFO program offers both BA and BS
degrees. The curriculum is based upon a com-
mon core of courses which is required for ail
majors. BS candidates chose between four ma-
Jor tracks while BA candidates tailor their pro-
grams to satisfy their individual career goals
including a broader liberal arts component.

The common core of courses required of all
INFO majors are:

INFO 1208 Statistics |

INFO 2101 Programming and
Problem Solving |

INFO 2102 Programming and
Problem Solving 1l

INFO 2210 Systems Analysis and
Design

INFO 2222 Fundamentals of
Information Systems

MATH 2225 Discrete Mathematics |

MATH221S Calculus |

B9 11th Annual National Conference on Ada Te.unology 1993

The four concentration tracks fr.r BS candi-
dates are Computer Science, Information Sys-
tems, Management Information Systems, and
Computer Education. Ali four tracks require 51
-credits of appiicable conceatration and cognate
coursework in addition to the common core.
BA candidates are required to complets 335
credits of coursework in computer and cognute
courses above the common core requiremet.

ADA BACKGROUND

In the carly cighties Stockton embraced the
educaiional concept of emrhasizing a single
prograniming language for instructional pur-
poses as opposea to a sampling of languages
that was prevalent ai the time. The larguage of
choice was Pascal. The only time other lan-
guages were taught, and continue to be taught,
is wher they have application feaiures not in-
cluded in the primary language. File processing
using COBOL, numerical methods using FOR-
TRAN, and artificial iniclligence using LISP
and Prolog are examples.

As the decade progressed, the Stockton com-
puter science curriculum placed increasingly
greater emphasis on emerging sofiware engi-
neering concepts. It becaine painfully clear that
standard Pascal lacked fearures that would pro-
vide strong support for major software eagincer-
ing principles. Consequently, faculty decided to
examine other languages to detcrmine one most
appropriate for the INFO program.

One of the primary goals in the instructional
language selection process was the capacity of a
language to be broadly included in the curricu-
lum. Wherever possible, within the limits of a
liberal aris college curricular requirements, the
Stockton program incorporates the ACM cur-
riculum guidelines.

After an extensive evaluation of many lan-
guages, Ada was selected as the language of
instruction. The support for software engineer-
ing principles plus an exceptionally high level
of standardization made Ada the clear cloice.
Additional factors were the emergence of vali-
dated Ada compilers for IBM FPC compatibic
platforms and Stockton's close proximity to the
Federal Aviation Agency Technical Center in
Pomona, New Jersey. Stockton has historically
placed many cooperative educatios: students at
the Tech Center.

ADA EVOLYTION

Murray Kirch, the senior faculty member in
the department, was instrumental in the selec-
tion process and the subsequent faculty training.
It is axiomztic that there must be a strong and
dedicated leader if a project of this size is to be
carried to fraition. '

Before implementing Ada in apv course,
substantial groundwork and preparation is re-
quired. If the program is to succeed, there must
be strong faculty preparation. The Steckton
transitional process commenced with Murray
Kirch attending an intensive 4-week faculty
seminar at Tuskegee University. Later Murray
conducted a one week Ada workshop for faculty
members on the Stockton campus. Non-com-
puter science faculty members were especially
encouraged to attend the workshop that was
supported Dy the institution.

It was decided to start the Ada transition
process by initially employng the language in
upper level courses. This would enabie facuity
to gain experience in using Ada with well-pre-
pared students before atterapting to introduce it
in large, introductory level courses. This also
produced a cadre of student assistants for lower

11th Annual National Conference on Ada Technology 1933

140

141

level courses to be tzught in subsequent semes-
ters.

The transitional goa! was established to take

place in a three year period. The goal for the
first year was to introduce Ada into Jua-
ior/Sepior level courses. The second year ob-
jective was tu incorporate Ada in Sophomore
lever courses. The third year was the year that
completed the process with the introduction of
Ada into Freshman level courses which incluced
the CS1 and CS2 courses. ’ :

During the fall semester of 1588 Adz was

introduced to the Stockton curriculum with the -

offering of Operating Systems and Program-
ming Language Structures. Ada's tasking ability
made it an ideal programming language cboice

in the operating systems course. In the pro- -
gramming language course, Ada was both an.

object of study as well as the implementation
language for a language translation proiect.

The spring semester of 1989 witnessed the
incorporation of Ada as the language of choice
for a sofiware engineering course. Stockton also
co-hosted the Sc:venth Annual Mational Confer-
ence on Ada Technology in Atlantic City during
the semester. During the fall 1989 semester
Ada was introduced into the sophomore level
course in data structures.

During the fall of 1990 and the spring of

1991 Ada was the language used in the fresh-
man level courses, Programmirg and Problem
Solving II (CS2) 2nd Programming and Problem
Solving I (CS1). This completed the transition
from Pascal to Ada. o

The major Ada concepts introduced in the
course sequence included the introduction of
exception handling, packages, and attributes in
the Programming and Problem Solving I (CS1)
course. Generics, advanced exception hundling,
abstract data types and team oriented projects

. are embedded in our Programming and Prcblem

Solving I (CS2) course. The Data Structures
course cnables students to gain experience with

* a more sophisticated use of generics and other

Ada features. The Operating Systems course is
a natuwral for the introduction of concurrency
and tasking using problems such as the dining
philosophcrs and the readers and writers.

- Upper level courses featuring Ada features

* include Programming Language Structures
. (PLS) and Software Engineering. In the PLS

course Ada is trcated as an object of study and
additionally is used as an implementation lan-
guage to write a sophisticated project such as an
interpreter for a Pascal type language. The
Software Engineering may be conceptualized as
a capstone course using large team projects en- -
compassing both maintenance and startup pro-
jects. Because of the proximity of the Federal
Aviation Agency Technical Center, and the fact
that many students by this time have spend a
semester co-op at the Tech Center, an air traffic
control project is typically implemented. A

. maintenance project available from the Soft-
- ware Engineering Institute is frequently imple-

mented as the maintenance component.

~ When Ada wes first introduced the only
compiler available to students was VAX Ada

"running on a DEC VAX cluster consisting of a

VAX 6410 and a VAX 6310. In 1989 two Me-
ridian compilers were made available to Stock-
ton faculty through the Annual Conference on
Ada Technology's Academic Outreach program.
By 1990 a Novell network was outfitted with a
Meridian Ada compiler, providing students and
faculty with the option of using the PC/MS-
DOS or VAX/VMS based product.

Meridian alsv made PC based compilers
available to students at substantially reduced
prices. Many Stockton students purchase Ada
compilers to be used on their own computer
systems.

11th Annual National Conference on Ada Technology 1993

i
S

'OBSERVATIONS

Several lessons were leamed during the
process. Faculty development is an ongoing
process with members aitending frequent con-
ferences and training seminars. Additionally,
Stockton faculty have presenied seminars and
papers concerning technical and educational as-
pects of software engincering with Ada at re-

~ gional, nationai, and international conferences.

Textbook selection presented an initial
problem. The selection was, and is, limited
when compared to the plethora of available Pas-
cal books. The scarcity is especially noticeable

. at the introductory and intermediate levels.

However, thc quantity and quality of available
Ada textbooks are dramatically increasing. A
list of available texibooks appears in Feldman!.

As a first programming language Ada does
present some practical problems. Developmen-
tal environments are not as user-friendly as
those available with Pascal. This deficiency is

. especially ncticeable when compared with the

exceptionally friendly front-end provided with
Turbo Pascal. The increased time required to
produce an executable program using Ada can
be a source of student frustration.

Initial student programming frustration may
be substantially overcome by the judicious use
of supplied source code. A supplied package
can hide many required implementation details
from students until they ate ready to compre-
hend the Ada language complexity.

CONCLUSIONS
The transition to Ada at Stockton has pro-

duced far morec advantages than difficulties.
Students are exposed to software engineering

.concepts starting with their first course. The

use of Ada has facilitated more substantia] stu-
dent projects throughout the curriculum begin-
ning with the introductory level course. A ma-
jor side effect has been expanded student em-
ployment opportuaities. '

Student reaction to Ada has, in general, been
enthusiastic. There is some initial refuctance
from beginning students who have experience
with Turbo Pascal. :

Ada is a language that is designed to reduce
life-cycle costs; this is partially accomplished by
attempting to discover software errors as early
in the lifecycle process as possible. As a con-
sequence of the more extensive error checking
performed by an Ada compiler, an Ada program:
written by a beginning student may be more
difficult to successfully compile than its Pascal
counter,..rt; however the Ada program is more
likely to run successfully. However, this advan-
tage is lost on some introductory programming
students. The first programming course typi-
cally terminates with a demonstration of Ada's
generic features. This characteristic, coupled
with Ada's exception handling, tends to convert
even the strongest Pascal proponents.

However, most of our students are eager to
learn Ada. They know it iz a more modera lan-
guage and oue for which there is strong local
demand by prospective employers. Students
also feel a justifiable sense of accomplishment
as they learn to use Ada in their software pro-
jects.

A well prepared faculty, coapled with mod-
est institutional support, resulted in a relatively
painless transition to Ada. The "top Jown" ap-
proach of introducing Ada first in upper level
courses and latter in the: intermediate and intro-
ductory lev:l courses worked well. (Feldman!
provides several examples of academic institu-
tions where Ada was introdured using a "bottom

17th Annual National Conference on Ada Technology 1993

142

143

up" approach). To paraphms-é ke old saw "you
don't have to be a computer scientist to like
Ada, try it you'll lik¢ it."

REFERENCE
1. Feldman, M. Ad: experience in the

- undergraduate cwriculum. Commun. ACM 35,

11 (Nov. 1992), 53-67.

- About the Authors:

- Urban A. LeJeune

Division of Professional Studies
Stockton State College '
Pomona, New Jersey 08240

email: lejeune@pilot.njin.net

_ Phone (609)-652-4477

Dr. LeJeune is an associate professor of infor-
mation and computer sciences at Stockton State
College. He holds an Ed.D. in educational ad-
ministration from Temple University, a M.S. in
computer science from Monmouth Coilege and
a B.S.B.A. irom Thomas Edison State College.
He has twelve years of teaching experience in
addition to over twenty years of computer and
electrenic industry expericnce.

Dr. LeJeune's rescarch interests include com-
puter science education, telecomraunications as
an educational tool, distant education, pro-
gramming languages, program generators, lan-
guage translators and the educaticnal use of In-
ternet. Ada activities have ircluded presenta-
tions at several Ada specific confersnces and
publication on Ada and educationally relaied
subjects.

Murray R. Kirch '
Division of Professional Studics
Stockton State College

Pomona, NJ 08240

email: mrk@vax002.stockton.edu

'Phone (609)-652-4355

Dr. Kirch is a professor of computer science and
mathematics at Stockton State College. He re-
ceived his Ph.D. degree from Lehigh Univer-
sity. Prior to joining Stockten he held positions
at the Center for Naval Analyses, Lehigh Uni-
versity, and the State Uniy ersity of New York at
Buffalo. He has held visiting positions at New
College of the University of South Florida,
Clarkson University, the Software Enginecring
Institute at Carnegie Mellon University, and the
Indiana University (Bloomington) Cooperative
Program in Malaysia. He has served as a con-
sultant to major academic, commercial, and
government organizations in North America and
Asia.

His professional interests include software en-
gineering, artificial intelligence, computer sci-
ence education, and the mathematics of risk.

11th Annual National Conference on Ada Technology 1993

THINKING IN Ada - HOW SOME STUDENTS EXPERIENCE THEIR NEW LANGUAGE

Kevin J. Cogan

Program Executive Office
Standard Army Management Information Systems
Fort Belvoir, Virginia 22060

ABSTRACT - It has been said that the way we think is
determined by the language which we speak,
Trenslstion berween spoken languages dees not slways
have a one-to-one correspordence. Computing
languages pose the seme preblem of precisely irying
to represent a real-world problem as & computer
atgorithm. The Ada progremaing lsnguage can be
presented to siudents as hsving a high correlation
with the real-world problem domain, Packages,
enumeration, tasking, anc exceptions ore likely to be
new concepts tc the student of Ada, but they can be
easily acquired through good representative problems,
Recognizing the real-uorld through Ada descriptions
can rescmble a new natural language for students.
Specific course probiems ard programs which
encapaulate the learning experience are described,
Through such experiences they will appreciate the
power of their new larguage and enter their careers
with confidence.

INTRODUCTION

Linguists have postulated that how we think is
determined by the language which we speak. They also
note that translstion between spoken languages does
not always have a one-to-one cerrelation. A specific
exarole is the German word Gemutlichkeit (a special
cotiness) without a cingle English uord to precisely
represent it.

Computing languages pose the same problem.
Software sngircers have the difficulty of trying to
precisely represent a real-world abstraction in a

linited vocabulery. Perhape the converse situation
. is more often the case - that the limited vocabulary
of 8 computeir langusge determines the way we think a
problem shoutd be represented.

The Ada programming language, with its 62
reservad words, can be presented to students not as
s limitation of expression but as a gateway to bettar
and new wWays of representing the abstraction eas
compared to other comcuter languages. Packages,
erwmeration, tasking, and sxceptions are likely to be
new concents, toois, thought process, ard vecabulary,
Ada can be an enaoling technology for the
increasingly challenging software ervironment,

The existing aspplications for the space
station, nir traffic control, and targe MIS projects
sre indicators of the future of Ada and the level of
human thought and real-world to computer language
trenstation needed to solve them. Students ore told
that this s the problem domsin for their chosen
career. They are told that Ada provides a rich
grammar which allows them to exercise their power of

thought arxd expression. Through concrete and
successively more complex piroblems, they acquire a -
measure of confidknce that they wiil be able to
master the problem domain of their future.

This paper driws on over twelve semesters
of teaching beginning and intermediate Ada courses
to undargracistes. Specific course problems and
progrsms are selected which represent a sanple of
the student experience in this curriculum. At each
introduction of » new Ada tool, the transformstion
from word to thought is remforced through a real
or futuristic problem. Banquet halls are compiex
records of various size tables which ara themselves
arrays with constraints. Soda machines ara man-
machine interface devices. The post office
requires a program to weigh and ship pacrages
automazically. The result of thzse exercises is an
increased ability to corceptualize the real-world
in the Ada vernacular. Stucents are challenged to
model a football scurebourd or the instrument panel
of their car cr stereo. The color code of a
resistor offerg the opportunity to introduce ‘P0S
and VAL sttributes in a robotics application to
read or paint {t.

By mid-semester one can argue that the way
the student thinks about a problem has now been
altered by the expressivensss of the Ada language.
Objects can be stated as a collecticn of simple and
compogite types. New tools affcrded by the
language have elevated the plans on which problems
are orgenived ard solved. Student derived term
projects are the capstone of the course snd serve
as & measure of the breadth and complexity of
preblems that the students themselves feel capable
of solvirng in their new language.

PROELEMS AND ALGORITHMS

Just Llfke transiating from one natural
language tc another, transiation between the reasl-
world and a computer algorithm i{s not a direct
process. A graphic description of this process was
presented by Ledgard and Marcotty! whereby real-
wortd objects and operations in the problenm domain
are converted by the prograrmer into programming
language objects and operstions in the solution
dcmain. A computer aljorithm produces output data
vhich is then interpreted by humans back into real-
world objects, From this model cne can infer that
the higher the level of abstraction peruitted btv
the computer language, the easier one can translate
between the real and computer werlds, Students are
taught thet Ade provides the tools for high {evel
apstractions and that objects can he expressed very

11th Annual National Conference on Ada Technology 1993

145

directly. For example, a simple program to mix
colors is presented. If the abstraction fs to mix
blue and yeltow to get green than the statement

Resulting_Color := Blue + Yellow;

is a permissible statement where “+* {g an overloaded
function for the declared enunerated type Color and
the supporting inplementetion algorithm for the new
function “+% ig shown in Ficure 1.

with TRXT_10; wse TSXT_30)
peoceduce | ':U‘:tl is
(S0, BLOR, YRLIO0%, Gll RPLE , CRANG!
mww.‘ea..! g‘”" e “.1 § e TRLON R, PV ’ ln
age 56 1s wew DNGLIRATIONW w(m e COLOR
:::e‘:u- *e% a0 t COLIA returs CBLUR 4 T Eo

eate A s
when UED > case 8 ls
when TELLOW =) retura OBANGEy
whoa BLOE =) retwes PORRLZ)
whea mn =3 PUT("NII WOT DEPINSD®),
tatura aidjy

X
when BLCE =) ease l ll
! YLLOW »> retura GAYEN,
» RSD @) raturn FONPLE)
M others »> PUT(“NIX NOT DEFINED®);

. retusa BLOS)
. end cosey
when sthers > PUT{"NIX WOT DEPINZD®))
cotura Ay
ond sasey
ond %+
bcgin ~=pAIR
Aecp

POT(*ENTTR 7WO0 COLORS 20 BE KIXED®)) IWEW I_LINg;
GET{COLOR 1)y OH(CQW 3N
ca:.on_) 2 QLoR_)

couon X1

COLOR") e COLORTL
4t colon 3 /= cobonr 1

u('!n BEPOLE !l '). mtcowl L 3}
4 LINE(2)
1

wad leopy”
ondy mid

Figure 1. Program to mix colors.

The teaching point here {s that Blue and
Yellow are truly values in an enumerated type and can
be as easily computed as one can pour one gallon of
paint into another. In another language, say

FORTRAN, Blue and Yellow would have to be vsrisble

names, converted to a nuneric value, computed, looked
up in a result table, and Green printed es a
character string. This is far removed from the real-
world sbstraction, and through this kind of example
the student quickly learns to appreciate the power of
expression permitted by the Ada langusge.

Students are soon introduced to compound data
types through records and arrays as a means to
describe resl-world objects at a high Lleavel of
abstraction. An early work by Downes and Goldsacke
for a hospitai pstient monitoring system is a
foricdable case study and discussed with the
students. it presents high levels of abstraction and
considerable depth of decomposition. Records and

" arrays composed of other reccrds and arrays permit,

for example, the retrieval cf the permitted upper
blood pressure limit among other factors for the
patient in bed 13 of the intensive care unit by using
the dot-notated expression

Intensive_Care_Unit(13).Safe_Ranges.Upper.Systolic

Through this and other such examples, students easily
grasp the concept of complex duta types where the
components of records and arrays can be constructed
from other complex types until an atomic level is
reached. This permits the student to visualize at a
high level of abstraction and develop skills to

- technique.

decompose a problem. Practicsl exercises described
later allow the student to gain experience in this
Tools for “industrial strength®
programs are early in the making.

LEARNING TO SPEAK Ada

The rudiments of expressing oneself in a
computer language are not unlike a spoken tanguage.
At the same time that the noticns of top-down
design, abstraction, decomposition, and parallslism
are introduced, the student must also learn from
the Lottom up the syntex and semantics of their new
languags as one must learn the spelling, grammar
and meanings of a spoken language, It is
instruciive to observe how a young child with many
ideas is frustrated as {t strugjles to use new
words in an unfamiliar gramnar. Classroom
experience has shown that stuients need and desire
to write real code that compiles and executes at
the same time that they are learning concepts,
design techniques, and the salient readability,
portability, reliability, end maintainability
tenets of Ada. A single viewgraph of the 62
reserved words of Ada helps to alleviate any
earlier preconceived notion that Ada is a vast and
complex lenguage. After ali, they esre told, only
elsif, rem, end xor sre not English words and even
they are seif-evident or require only Llittle
cxplanation. All other reserved words support the
high level of abstraction that Ada permits, end
through experience, like speaking a language, the
actions or semantics they represent will becoms
second nature.

An fmmersion finro the syntax is slso
immediately called for. A quick ualkthrough of
Appendix E in the language reference manual, or the
equivalent in many textbooks, is necessary.
Confidence can be built by & simple introduction %o
the Backus-Naur Form (BNF) where the meaning of the
symbols ::= for denoting a dafinition, := for
assignment, {1 for O or 1 occurrence, () for
1 or more occurrences, snd | for alternation are
sufficient to understand and decipher all of Ada’s
grammar. Students find it not too challenging
after all to determine how to verify that the
{dentifier R202 is permissible but 3CPO is not, or
similarly how 2 000 00C is an optional form of
2000000 for readability, but why .03 is not an
sllowed decimal number representation. Practice
and testing allow students to soon master
definitions cuch as for the case gtatement.

case_statement ::=
case expression ia
{vhen choice ¢ | choice) =>
saquence_of_statements)

Such mastery is necesssry to test new ideas for

abstraction and debug incorrect assumptions feor
challenging problems later.

AN_Ada SAMPLER

Femiliarity with the problem domain eases
the transition to writing programs in Ada.
Consequently, example problems are best understood
when they are part of the real-world experience of
the student. When introducing the fact that

11th Annual National Conference on Ada Technology 1993

enumersted types can have values which are overloaded
(s value declared in more than one type) this et
first may sesm foreiga or swhiguous. Since nost
students have taken a genersl course in chemistry and
are femilizr with the periodic toble of elements,
overloading ths value Ne for the element neon can be
ingtructive. Neon is both a noble atom

type Noble_Atom s (He, Ne,Ar,Xr, Xe,Rn);
and a period 2 atom

type Period_2 Atom is (Lf,Be,B,C,N,0,F,Ne);

‘ The Deshboard

All students are well acqueinted with the
sutomobi le. Some are more fnvolved with the
technclogy than others. The {nstrument panel of
autumobiles are highly diverse. Some are simple,

Yor AmPmamne (A, o),

0',.. o TE TR 5V VR luu.‘tw'm-w)‘,
Byoe Puav.otarurn e (larr g).

e Rl uaver e, (m'm ,M‘.W,WM,WH-)-
Tyra LiGHrs Ie (P ¢, Prauees | tcann SEen Imu.uw,\l;
e Wiy » (omF, nmecmmer | trar, mer)

Hro TWASICNA,, a{ wur gun); i

+ Seumai ;
Lavongss T Gwonmtam ;-
Ouugy & Swmaan;
o TROCAUWL b gamars ,
S ey Epauen 4 Bqveaum
A ¥ o, 1) a-u_r.mm.. "
T arrwel LINTY.. TV -m SR

Wbty ¢ TR %A e
Vv 1 msma = 0..%;
SAL e 1 mareess, cwe “3..8;
faet LI Y O =3..3;

L T T VY 1 Senman

end mond.

e Dasuswmes i
Teas t Swmo

Gas (3,0 WV
YLD amm P oeae: e 0..153
Srano KPn 1 e, [

Meawgres. 1 INwes » O..45e0;
T AL Llmasni, | Sue e P
At e Vst st 3 emaad;
ORAS LATAL . Shammny | SaBL Rk
Wit o R At nsiq st AavRan
L GuT el LIRL S T
LArgL .oy 3 mewms
Gatuas PrSLE Y, GAL L jurge DOLIXY
TURN S wAL AR E Ratasdhd LT S%)
W 0T obecarr 3 SwmeaaM
ermarya b ATRLeR. ma.v.. aqeeey,

w4 _m;
Figure 2. Dashboard Model

sone are arrayed !ike afrcreft cockpits. Some ere
amalog, some sre digital., Studants recact very
favorsbly and are often highly challenged to
describe as a record in Ada the details of
switches, Llighte, gauges, and knobs ori the
dashhoard of their cars., Taken as a unit, the
daghboard s & relatively high level of
abstraction, as {s the automobile ftself.
Students, after having been introduced to arrays,
records, anc nuneric types, return {nteresting end
varied homework assigrnments when given this task.
They sezm to enjoy (as far as a student can enjoy
honework) their ability to express 3 complex cesi-
world object in Ada and begin to appieciate the
transtation process betueen the automotive and
computer languages. Figure 2 is an actual student
submission for this homevork assignment, complete
with radio/cassette and graphic equalizer.

Football Scorabusrd

With such types of assigmnments, it 1s fair |
to test these concepts on examinations. The
football scoreboard design probiem tests the
ability of the student to model thisz abstraction
slso. as a record, using arrays with array
agoregatas and a record for the clock as named
components in the record. The problem statement
and solution aie showr: in Figure 3.

I .

*ees

boww D . yasss r-um‘

packege SCORZGOARD is
type TINS OF RINUTES 38 renge B..1;
type WINUTE Ts cange 8..9;
type TINB NP_SECONDS is rrnge D..%p
typa SELOND is zenge 3..9)
type CLACK is

k) § TENE_OF_| i
o trtwos | Tomb oF
7y t X
secluns s $scofn;
and resordy
tyrs TARDS {f arfay(l..2) of INTECER range B..9)
type SCOAR 48 ercay(l..2) of INTEGEIR cange B..¥
790 QUARTES LIGRE ie arzay(l..4} of BOOLEAN:
Syps DON¥S 1S zange l.. &)
type FOOTBALL_SCCRCROARD o
tecerd
FINE_REMAINING ¢+ CLOCK 1= {1,5,6,0)9
nnt 8CO

x
VIS1YOR_SCORE ¢+ BOTRE 1a (9,0})
GOASTER_LIGETI 1= (IRUE,FALSE,FALSE,PALSE)

QUARTER s

BOWR 1 DOWMA 43 A

YARDE_TO_0O 1 YiRDM e (3,4)y
ond recced]

oend SCORTROARD;

Figure 3. Football Scorebourd

11th Annual National Conference on Ada Technology 1993

\

A\

The R or Robo ' Post Off

Sometimes it is useful to supplement the Student program assignments cannot usually
course with unfaniliar subjects end introduce other " be very large given the time available in a one
branches of science and engineering ax part of the semester course. And yet students should be
student experience in the Ada curriculum., Fewer intrcduced to topics and experiences germane to
students have taken electronics than chemistry before Ada. Programvning in the large is such a topic.
a programming course. Passing out a handful of" Some day as professional progranmers, they could be
resistors and asking what the color cude represents one of tens or huxireds of programmers or a

can add a new dimension to program design, livens the project. Ada spplications con exceed millions of
class, and anticipetes the future of software ‘ :

2 "
.ml.‘c.t‘ * Th‘ re3ist°|‘ v t prOVides .uch an . Thei postal service 18 giving serics coneidwration te cnverting all
experience as described in Figure 4. @ these Stews ints & 24 haw teld-service beotn. Conceptually, &

: N MMErIRraceRSIr Sriven By Ads saitwere wil) senitor and sserate 4
26MIRALIOn B¢ VOICI TECEAPNICION SYStOmS, BCHles, OBRICAL sCanners,
ond vlectremechanical staeping sachines are ConveveTs. The
integration of & complete system wmill e asccammiished as each
precees bacumes technically availasle. Theretore. & teo-vemn Sesign
appreach will Be taven such thatl new EPEratiIons C8n Be FeCOCe with

X einieal recoasilstion of exivtent cedules.
h electrarie coeugonenty ssautattursr s corverting part af Ini An Aus packasge specidication stancard has slrecdy Seen decriead upon
sporatten 23 rreetic agelicatices, ang L MAY NOT BE ALTERED in eny way. It 1% given as tellaws?
¥BBLSY & SiErIiPCEPEICroRAteC TODOTIS)
1nge M ’uun PORT_PARCEL
S1cP salue 200 renvert 1t te the acaroertate yee PODE G’ INIHINY 18 (SURFACE ,AIRI)
saler ¢oge 137 SUtputl t1 the 2ainting Natalne. lnn REAL 18 new FLOAT)
type PARCEL _DATA 18
record
L3l 14 : REAL range 0.0..30.08
I1P_CONE 1 INTEGER range O.. 96999
stentrICont . SHIPHINT 1 MODE_CF_SHIPMENY 1
1% q]) ne recerdt
risun werien procedure BET_CORT (DATA @ PRRiEL _DATAI COST ! oul REALIE
’ - . one POIT_PARCEL
1 oy ’ .
; pachage budy POST_PARCERL ac -
s ") prosedurs GET_COST (3AYA 1 FARCEL_DATAS €OBT I sut aEALT 38
|) (“-ml -
. 4 e
4 ORIGINATING 25P_CODE 1 constant INTEGIR te 8730%5;
M [lllﬁ!l" llllt DIGIT : oanctant INTROER (s 1;--First dimat
L
. !l.ll. 'Ill! {11354 1 INTSGERS
1 censtant REAL te S.S‘
.l"lllltl t INTSOERS
thXOI & REAL3
. ll"". TIRST _BIGIT te (DATA.IIP CODE 7 19 000)
with FRXP 20; wee TEXT 10 - PITTRAINGE 15 ADS(ONIGINATING PIRST_ 21011~ ll'lﬂﬂ TIRSY_DIAIDY
proovdnre AEKISTOR Sa cose DIFTCRENCE 1
type mﬂa n (READ, PAIN?, OUIT)y when § => PACTOR te 0,103
AYPe OOLOR_CCOE is (ALACK, BMOKI, KED, ORANCS, YRLLOW, when } => FACION 1o 0,183
-EEE, R, “.. GAAY mi when 3 e> FACTOR t» D.173
Poskage CULOR I0 is mew DMIXSTATION: 10{COLOP COCNYY when 3 o> TACTOR te
pockags OF 20718 sev ENUNEXATION lo‘(onurxd). .. when 3 o> FACTOR 3=
3T J0 Le mov INPECER IUTXNTINER)) when § ®> FACINE ts ©
908 ¢ CPERATION 1@ ISAD) = when 6 *> FACTIOR te 0.23;
e OF 13) eee INT_IG) wee COLOE 104 when : - :‘g;g: te :.:::
OOLOR Botce =7 ' whon § o> 24 te 0.29;
- 2 3 1 cxak_coom) . © wnen 8 &> FACTOR e 0.31]
re NEAD RECICTON &g - . when ethers = Aull;
SR VALTE ¢ JTRems: . ond casel
IO VALK 1 ' T z;::
“mrren - COST t¢ DATA.WEIONY a P&
-ﬂ”ua: hH m’"‘mn“":f":'ﬂf“""" eieif DATALEMIPALNT & ATX ARen
ERSIETOR D- lwl o (wﬁa,|’c1. EOII‘ m PATA, Ull.ﬂ? L] !l“'bl A ALY _CHARRES
! 3 u(m ‘Tost n’:“ e 8 c‘:;n'
rpp— o CO0E ' POB { L3} . ond nn_nlcu:
PT The resister value is °);PUT(ass:
" LIWE(2)1s 1] { BTOR_VALUR) 1 PYT(* OINE®)
ond JZAD_RECIATOR: .
- . =
PAINT SERISTOR Lo wiAh IR3T_103 use TRXT. 10
muun.lluma l_VALUE, DIG1TI, DIGIT2: INTROER) with POST. 'Altil.l use 'Dl! PoRCEL} - -
precsdure BA
R S~ S:f ™ e e e 21P_COR8 nnnu. NEIONT_SNROR, SHIPNENT_ERAOR @ wuceptisnt
. ‘ﬁn tb- nlhut value * BATA_ I8) num DATA] .
ecrTansIeTON |_VALUR) s)' Gﬂll Sur t atat
METIILIZA = O sata’y PILE, !t?l
while RRBISTOR |_VALUE >» 9% lasp packegs INT_10 10 nww INTEGTR_I0(INTESIN); use INT_ ln,
WULAIPLIER Te MUILPIPLIER & 1p . pachage I“L 10 19 new 2L0AT, TocREAL) S use BEAL 30
ARS2ITOR _VALDE s= RESI 15TOR_VALUS 7 10y package NODE_ 10 as nen llun“nlnn 101n0RE_AV Cu"-:n!-, yse MODN
ool Lospt function L5 DESTINATION velurn lurlll! i -uun\-:
SI6IT1 i@ FESISTOR VALUT / 10) . gunciien SIT_NEIGNY return REAL 38 & '3}
DICITI 1@ mxm'uwx [101 lmun STT_NODE return NODT_OF ln"ull! i nnr.\l-
PUT{“The ooloze ars)¢
PUT{COLOR_CODR ' VAL(VIDIPL))y IPP(®)y »mnu. I_FILE, *LaD2.8AT%)3
g COLOATCOOR 'VAL(310X22)) 1 PUT{® *); :n INPUTCOATA);
7T {COLOR” CODE* VAL (WILTIPLISR .. : ooy
o LIRE(Z)) Yawre(s.")y (348
ond PAYNT RESISTOR) . uu IM,2TP CODE o GET_DEETTNATION;
o DATA_TN.UEIGHT e GIT_WKIGNT;
- PATA_IN.SHIPAINT i+ GET_NODER;
bogia ——MAIN a8T_ COINBI!Q N, COST out);
e LIMRe . . . PUTT Tne cost of nrul 18 % '3 PUT(CUST QUT)¢
"iTe X8 /n TUIT lecp nuts. {13
*Zatel encoption
CETTo0a), AT & Job, ME\D, FAINT, er QUIT*)s when 217_CODE_BRBUE o> DATA_IW.UEIGHT tw GET WELONT;
eses JOB s : BATA. IN.ENIPRENT e GET_NOLTS
whea READ when HEIOMT _SRROY s, DATA_JN,.SHIPAENT e QET _MOPE;
when ;:::! : 'u!ﬂ.l”l:m - . : unen SHIPATNT IIIOI > aulls : '
Yhen QUTIY o aell;” 4 when sthers CLOSE(DATAY S
whea 923 . exit?
ot cese; = PUE_LIRE(ZAROR ~- OB UNGVE®), nai ’
ond 1eeps and loep!
ond RESIFYORy endi
Figure 4. Resistor Robot Problem Figure 5, Automated packsge mailer.

147 11th Annual National Conference on Ada Technology 1993

lines of code and tearms of proyrammers will be nceded
to write this code. A single project could employ
msny subcontractors and could be geographicaily
dispersed hundreds or thousands of miles apart.
Small programs to teach this point can be used in the
classroom. The post otfice problem {s designed to
describe the functionslity of a new package mafling
machine. The peckage specification is provided by
the instructor. [t provides the interface between a
student writing the application code in procedure
called *main®* an? the student writing the
irplementatich of the package specification in the
package body. Separate ccmpilation, compilation
order, ir‘srmaticn hiding, and programming team
independence are the learning experiences here as
presented in Figure 5.

Rendezvous with the Soda Machine

Parallel processing with Ada’s task
facilities is 8 new dimension in progremming for
almost sll undergraduates. !t is perhsps the most
conceptually challenging learning experience in en
Ada course. Six of sixty-two reserved words in Acda
are devoted exclusively to the task mechanism. VYet
the noticn of perallelism is manifested all around
the real-worid. Bank tellers are “serving" tasks,
customers are “user® tasks, Sometimes a “rendezvous™
takes place between the two or gsometimes such &
communication is Y“guarded* or %timed.® There asre
queues of customers and multiple service requests.
The new vocabulary of task, abort, entry, sccept,
select, and terminate takes on meaning and th. BNF
tools decipher the grammar for definitions such as

selective_wait ::=
select
{ when condition =>]
_ select_slternative
€ or { when cerdition => }
select_alternstive)
{ else
sequence_of_statements)
end sclect;

Once again a familiar situation puts the
student moie at ease when tackiing & new language
construct. After all, humans can be represernted as
tasks and so can machines. Students encounter soda
machines daily and sometimes hourly. Pushing a
button to make a szlection is a common man-machine
interface. 1t is a rendezvous with a machine task
which “accepts® a selection or guards a selection
nyhen* the beverage choice is empty { a status light
is flluminated to highlight this condition). Soda
machines may even be smart in the future and
comunicate the time to restock to the vendor via a
moden., Allox the student to conceptualize this
notion of a parallel process, add a bit of fiction,
and the student may often embellish the minimum
homework requirement. The written statement of the
problem and a solution is at Figure 6.

PROSL R

A cold beverage machine often sits idle even when aspty,
Al sclections gqanerally Rave o 1ight which (s lit when s
particular selwction is Aot evailable. A customer who chooses
that selection anywey gets & WULL result, and mis. #1ther maxe
another salscrion or no selection., When all laghts are lit, the
machine's rafrigeratison unit an3d pover Stavs on, and tne vendor
restosks the sachine on & schedule oased on historical daea for
rates of consumption. This sosetimes results in customer
grustration as well as lost revenues for the vendor 1f the
historical rates of consuepticn do not metch resl demand.

A "ssart® coid beverage machine could reduce {rfustration,
increass revenuss, corserve enefgy, and govern all of the
aschines internal functions. It weuld employ an enbosded
micreprocessor for (thesr purposss. It could be coupled to &
conmcnicstions 1ink which, whan sensing that the machine i3 --psy
1811 selection liants lat), wovld notify the vender's
headqusrters of 1ts espty stacus, block the slot for coin
insertion, and ther turn its ova power off.

[KB IRBEwTE ¢

You are required 1o esulate the cold beversee mach
writing & main procedire t{parent taskl with two ubl:Q :::l:f
wne which simulates the arrival snd custoser selection of &

39¢ WhiCh may Or @ay not ba svailable, snd & second rashk
WhLeh Bimaistes the cold beverage muchine ectaptance of the
Customar selection and outputs a Sgsdage to & file according to
the resulting mormal action Based Of the melection feither
Ssthing oF the type beversge dispensed). Output the selection
1ight status fhcolesn) before each customer selaction.
with TSIT 10, wee YIZT 10y ~
peceduts MAIR 1y =
type BEVERAGE is (COLA, OBANGE, CBAPE)
LAR)_8OL 2 PILE TYPE) ' ! "t
;::::: :mnc!axo is mevw muuﬂa!lo(-mn
LICAT 10 16 nev ZMUNERATION_10(BOSLIAM] g
nae BEVEMAGE_JO, sxPTY_LIGET_10) ST !

task BIVERAGE_CONSOXER)
R .
task BEVEMAGE PRCOOCER is
ontry STAML;
entry SILECT _COLA;
entey SELICY OR2MGR,
eAtry SELECT CAAPE;
BEVERAGE_PROOGCER;

ask doly 14 is

task dody BEVEMAGE PAODUCER ie separate;

ALIEEE §

bogin
CAEATE(PILE «> 1AS3 8OL,
nopg => oor Fiix,
WANE »> *LaK).$0L%) ¢
EET_OUTIUT{LARY SOL) g
8svERAGE_PRODUCER. $TART)
ond ATy

separate (RAIN) .
task body BEVERAGE_CONSUNZA ia
CROICE 1 arcay(l..11) of BLVEMAGE
t= (1131919 = cOLA,
21711 > ORANCE,
41814119 = CarE))y

bogia
tet IMDEX im CROICZ'RANGE lewp
ecsve CROICE(INDEX) is
when COLA ‘> BEVERAGY_PRODUCZN.SELZCT COLAs
WheR DRANCE @) BEVERAGE_PRODUCER.SRLECT ORANGE;
when QRAFE i-) l:v;un_vnpucn.uucr'suny
when others => nufl; =
ond casep |
and loep;
ezcepticn

when others 5> PUT LINE{*Exceptien raised i CONSUNER .t
and BAVZRAGE_CONSOREE) reer ety

::::r:;:mnln i o o
Y BEVERAGE_PRODUCES is
COLA_couwT, I coT
oRANZE Coowr, | :
APE_toUNT 1 MATOMAL (o 3;
[LIGRT) n;uy(llvmcl) OC SOOLEAN 1= (FALSR,PALSR.PALSE)

bogtn
WEW LINE()); |
acrepe STAPY; !

“;v;?:; in BRVEMGE leep
.
-u_un::“ FUTI® BAPTY LIGNT)3 PUT(ENPTY_LICET (1m2ED)),
ond loep;
NEW_ LIER}
::ul:rn.uani- {TAUR, TRUE, TRUE) then exity end i)
whed mot RRPTY_LIGHT (COLA
R L
(*COLs DISPRNITE®); wew
COLA counﬁ- €CLA_count l'u L
12 COLA_COMNT o ¢ Enen
Wﬂ“ LIGTTICOLA) 1o TaUT

ond 11,
"nl BELECT_COLA;

when ERPTY_LIGNT (COLA) »> '
oSOt seLEC?_cotay == d¢ mething

when Rt ENPTY LIGNT -

sccept SELECY Ewa:':m" >
PUT_LINE (*ORANGE DISPINSED®): MEW LiNg;
ORABGE_COUNT = ORANGE_COUNT = 17
1 ORANGE_COUNT » § tnen
“uﬁx_ﬂcnmwcn » TAUL;

b 1
and STLICT _CRANGE;
ot

vhes ERPTY LICHT (ORANGE) =>
o sxLEcT_oaauck; -= do nathing

when met ENPTY [ICHT (GPAPE) ey
sccept SILECT SRAPR do
PUT_LINE(*SRAPE DISPCNSED®)s WEW_LIaEs
GRAPE COUNT 1o GRADE_COUNT = Jp —
Iy 'ggntcouur 0 then
¥_L1curicaar
a8 t T) 1 TROR:

)
end SILECT_GMAPE)
o
when BAPTY_LICNT (GANPE} =5
accepr SILICT_Caarr;
0nd eslect) =
end loopy

= de nothing

PUT_LINL("SZVIRAGE MACNINE INPTY®:;
PUT_LINC(*VINDOR ELFCTAOWICALLY NOTIFIED T0 K .
PUT_LINE(*COIN SLOT BLOCKID, POWELR OPP®); HeTecK)y

end BEVIRAGE PRODUCER)

when TASKING_ENROR => PUT LINE(*SLVEIAGE NACRINE NOT AVAILABLE®))

Figure 6. Soda machine problem.

11th Annual National Conference on Ada Technology 1993

148

THE _TERM PROJECY

After completing homework problems and
laboratory exercises of the type above, students are
tasked to choose a term project of their own liking.
A series of design reviews are conducted by the
instructor who approves the project and the
commencement of coding. An interim code walkthrough
is conducted, and (hopefully) the student submits a
working program by the end of the course which
emulates a moderately complex system. Mistorically,
term projects are between 500 and 1000 Llines of
source code, Scme include graphical interfaces. One
such project expanded the soda machine with counting
change, portraying the status lights changing state,
end a sods can dispensed., A partiel Listing of some
projects includes the following system emulations:

Automatic Bank Teller

Creuless Tank

State Lottery Game \
Drone Aircraft Target ldentifier
Antenna Tuning System

Towers of Hanoi Graphics Game
Fast Food Ordering System
Helicopter Autorotation Simulator

The term projects represent the culminatiun
of what the student has learned, and as importantly,
how the student identified with the new language, It
manffests how the student now thinks of the real-
world in algorithmic form. Time is allocated in the
course for studants to give an ora! presentation and
terminal execution of their project to the instructor
and the rest of the class. Often there are questions
and challenges from the sudience. There fs a sense
of satisfaction with the Ada skills ecquired. It is
evident during the presentations. :

CONCLUSTON

The Ada language is an expressive tool for
model ing the real-world problem domain, Student can
experience their new language in wsys that psa .ile!l
spoken languages through s combination of top dcwn
and bottom up design Llactures * and coding
- requirements, Ada’s clcse affilfation with high
" levels of abstraction affords the student with the
--ability to conceptualize the problem domain and map
it to an Ada design. Learning Ads becomes an
enabling technology for the student. The language s
closely affilfated with the matural way of thinking
about a problem. Problem examples, honework, labs,
and term projects can provide a fertile test bed for
students to experfence their new language and bufld
confidence in their programming abilitfes,

REFERENCES

1. Ledgard, K. and Marcotty, M., The Programming
Language Landscape, Science Reseerch

Asscciates, Inc., 1981,

2. Downes, V. and Goldsack, S., Programming

Embedded Systems with Ada, Prentice-Hall, Inc.,
1982,

BIOGRAPHY

Kevin 4. Cogan is a lieutenant colonel in the US

Army. He has taught Ada courses since 1982, He
%8s the Ada course direcctor at the US Military
Academy ard was @ part-time associate professor of
computer science at Jersey City State College,
Jersey City, NJ. He has done research in Ada
parallel - processing at Rutgers University’s
Computer Aids for Industrial Productivity (CAIP)
center. He s2arned a B.S. degree from tha US
Military Academy at Wast Point and an M.S. degree
from Columbia University. He presently serves as
the product manager for an Army personnel MIS
project (SIDPERS-3) which will represent over
800,000 source lines of Ada code.

149 11th Annual National Conference on Ada Technology 1993

Integrating Ada Into Realtime Laboratory Teaching

Dr. Rodzney J. Behlmapn
Department of Electrical and Computer Engineering
Valparaiso University, Valparaiso, IN

Abstract

This paper describes a succession of
attempts to get Ada teaching started in an
engineering curricvlum. The target of realtime
systems teaching is described. Early experiences
with compilers and tools are included as a measure
of bow to prcceed, - Classroom experiences are
documented with the notable positive and negative
results exposed. Curriculum revision to introduce
Ada as an enhancement for laboratory teaching is
described. Finally the plans to use Ada as a
realtime language to target MC68000 based
applications are presented.

Introducing Change in Engineering

Change comes hard in Engineering
teaching, New ideas are often mistrusted until they
have met the test of time. To say it more succinctly
Engineering Educators are among the most
conservative professionals in the world. They are
quick to remark how old-fashioned things are, but
arc slow to make a really significant change. The
changes are left to scientists and a few maverick
research and development oriented engineers. Then
Engineers are quick to jump on the bandwagen,
once the band is in full swing.

In the area of softwa.e, the Engincer is
suspicious of any price for software until it is shown
to solve the tedious problems of design and analysis
that arc a large part of Engineering. Thus,
programs like ANSYS or SPICE can command a
high price while a compiler is of little or no value.
Further, the development of software is given little
or no value by Engineers who are not familiar with
the process of software system development.
Software piracy on the other hand is not largely
practiced among Engineers probably because of
their strong adberence to a code of cthics.

Thus for Engineering to embrace Ada as a
teaching language was a particularly difficult
proposition. Any compiler is viewed as expensive
and Ada was doubly or triply so during the early
Ada development times at Valparaiso University.

11th Annual National Conference on Ada Technology 1993

Some effort had heen spent to move the
Engineering Departinents into a software design
mentality. Until 1579 scftware was taught pretty
much in a syntax and semantics style only, with little
or no design process taught. Then the design
teaching began and shortly thereafter the switch
from FORTRAN (o pascal occurred to allow more
expressive power relative to the design process.

This author and a close colleague gained a
considerable experience teaching the software
design process to the entire freshman class of
Engineers. From our vantage point in an Electrical
Engineering department, the cost of software was
seen to take an inordinate bite out of a project
budget. This cost was being borne largely because
of the inefficient and often ineffective design
practices. '

As that teaching matured, the Computer
Science faculty watched, and after two years of
successful teaching with pascal the more mature
faculty decided that they could follow suit and
change the CS curriculum to the pscal language.
Engineering facuity in other departments watched
suspiciously until they saw the capabilities of the
studests emerging from the introductory teaching.
The new student was able to desige programs and
implement them in pascal readily. They soon
learned that implementation in FORTRAN was aiso
quite possible from the new design practices.

So some Engineers stayed hooked into
FORTRAN even if it meant using the terribly
inefficient PC-based FORTRAN compilers. Slowly
they maneuvered toward pascal, some actually
accepting programs writien in pascal in the upper
division courses. But, as they shifted, they began to
place great worth on the programs written for thern
by these new students with better capabilities than
their predecessors. The faculty started to place a
value on the code and so began to "own" it as
though it were irreplaceable, In hindsight this
should have been addressed as it began. For now
the situation became one where a highly
conservative group had placed a se!f determined
value on something and while many were attached

150

to FORTRAN most were hooked on the quality of
the pascal programs their students had created for
them. Experience is truly the best teacher,

Realtime Systems Teaching Eméms

In the mean time, Electrical Engineering
began to develop some good capacity for realtime
system work. Realtiine in this environment meant

that some physical system was connected to a

computer and would respond dcterminably to
stimulus from a computer program. Much work
was done in C and assembly language ana in our
laboratory all the work was done using MCG809
processors. Slowly a capacity to do the realtime
work in the pascal language was identified as a good
idea. A compile time and run time system was
developed for programming embedded systems in
pascal. This was developed by student and facuity
effort and is still a viable system for such work.

During this stage a critical event occurred
with the author being aopointed to an ASEE
summer fellowship at NASA-CALTECH Jet
Propulsion Laboratory. During that summer of
1981 Ada was beginning to take off for Department
of Defense processes. The supervisor for that
summer appointment was Dr. Ed Ng who had been
active in the development of Ada and was among its
strong proponents within NASA. Needless tc say
that ASEE appointment had a strong influence to
begin looking at Ada as a next step after pascal in
the laboratory.

Reading and study soon uncovered some
unhappy features of pascal for software engineering.
Separate compilation was severely lacking in pascal.
It was possible to use pascal include features, but
that does not really allow the gains possible from
dividing a large program into separate parts for
development. While some pascal dialects addressed
this deficiency, the realtime developmeat system in
use had no prospect for correcting the problem.

The method implemented for realtime
control in pascal kad been 2 set of procedures and
functions which allowed for addressing of hardware
memory locations and fielding of interrupts. The
fact that the pascal featurcs were working well was
of great benefit to the students. The further fact,
that the pascal extcnsion which allowed those
features was developed locally, was a serious
deterrent to convincing students that high level
languags was preferrsd over assembly. After all,

the extensions were not easily ported to other pascal
compilers. Thus the rcpresentation clause, so
obviously included in Ada, showed it to be much
superior to the pascal in use.

Necessary Early Experiences

The cffort to bring Ada into the curriculum
then began with an earnest search for a comuiler to

- support our efforts. At the same time the teaching

of Ada as a language was planned. A pertinent
paper by Jean Sammet pointed out the need to
focus on more than the language features [1].
Rather there was a pressing need to move our
introductory teaching into a more philosophical
direction.
taxonomy of sequential program as described in
Bohlmann [2].

The compiler search resulted in acquisition
of a non-validated compiler running on a PC. The
compiler was well documented and the company
corrected our difficulties with telephone and updates
as needed.” R & R Software provided us witk a
packaged JanusAda compiler in ten copies [3}. This
allowed us to provide Ada compilation services to
students at our public sites in and around our
computer center, The cost of the compiler was
borne by the budget in our department, and so
needed to be contained preventing us from putting
the more robust compilation services on our central
time sharing system.

With the effort to teach Ada underway, the
limitations of this early compiler were quickly
uncovered. The students routinely attempt to use

the features of Ada as documented in the Ada -

Language Reference Manual or LRM [4]. They
equally routinely misuse those features leading to
some confusion. This is where the study and
experience of the faculty is a critical factor. Such
problems as small symbol table space, and program
and data size limitations on PC’s were part of our
learning process. '

These problems were not unexpected.
What is of interest is that the scope of problems
that the faculty felt comfortable assigning to
students increased dramatically with the prospect of
success because of the features of Ada. It was now
possible to do a divided development with separate
compilation. During the first project the students
were divided into groups of two or three. Each

151 11th Annual National Conference on Ada Technclogy 1993

This resulted in a formalizing of a

/
..

group was assigned responsibility for a part of the
design. Class wide planning sessiors were used to
divide the preblem and assign the parts. The next
class meeting was devoted to discussing preliminary
specifications as developed within the gioups.
These specifications were evaluated for
completeness and service quality to the project.
Cnce the specifications were agreed upon, each
team had the assignment to cods the specification
and compile it into a common library. This step
proved to be a pertinent catalyst for the teams to
produce body text to support thelr own
specifications.

Though the compiler in use at th: time had
suwe limitations, the students were able to progress
rapidly into proper design for testability and
reusability. These features continue to be important
features of software engineering. Further, the
difficulty with the compiler fostercd a language
lawyer attitude among the better students. This
attitude was the key factor in extraction of the
pertinent semantic features to br: applied. As the
teams interacted, questions arose about how to
express algorithm or data requirements. The
language lawyers among us would quickly come up
with solutions. In retrospect, that capability was
necessary for the success in our efforts. A perfect
compiler may in fact not have enabled us to develop
that capacity.

This first experience added valuable
knowledge into the environment at Valparaisc
University. The students felt like they were learniog
and doing some serious large program work. The
facuity felt like they were learning and leading
. students into the philosophical approach already
recognized as the appropriate method of software
teaching. While the over all functionality of the first
project was never realized, the students who
participated uniformly rated that as their best
programming experience to date. In the years that
have passed, most of those involved, students and
faculty, have come to a much larger experience.
This was a good start,

Beyond that first project, the JanusAda
compiler was used until further budget was
allocated to upgrade. One upgrade was purchased
and donated tc the school by the faculty involved,
but finally it was time to search for a new compiler.
In the years that had passed the compiier
technology had progressed. Scvera! validated
compilers were available for PC work. Mecridian,

11th Annual National Conference on Ada Technology 1993

now a Verdix company, offered a price competitive
dea! on a compiler. Looking primarily for a
validated compiler, cost was the oiher factor in
choosing the next compiler. Meridian University
Support provided us with evaluation copies of their
PC-based Ada compilers. The compilers solved all
of the problems that had earlier limited our use cf
Ada. Thc version 4.0 AdaVantage compiler solved
the symbol table problems and the extended
memory compiler solved the large program space
limits when needed. Not unexpectedly, the new
compiler brought sonse idiosyncrasies of its own.

Shortly after selecting the Meridian Ada 4.0
compiler as the replacement, Meridian announced
two products of interest to us. One was their
AdaStudent which provided a validated Ada
compiler with the limitation that no library iinking
was allowed. This simply required that all code be
compiled into the same library. For small programs
and syntactic learning this was superb. Superb
because of its price. Our one time fee of $1000
allowed us to distribute ten copies of AdaStudent to
our studeuts for use on their personal computers.
We also had the larger compilers for the more
central sites and so the combination worked well.
The second product that appeared then was the
AdaZ product which later changed name to
OpenAda. The cost of this complete compiler was
dropped to $149 and several students and faculty
opted to purchase their own compiler. This
compiler had an integrated environment for editing
and compiling with language directed edit functions.
It showed some direct competition for functionality
with the Turbo Pascal product in use in our
freshmen course.

Continued use of the compiler started to
uncover some of it failings. During one process of
development we discovered that dynamic m=mory
unchecked deallocation was dysfunctional. We also
experienced some problems with order of the
compilation of stubbed sub-programs. The most
recent upgrade solved the problem of memory
contro! and as of this writing compilation order
problem is being investigated by Meridian. Even
with the problems encountercd the Meridian
compilers served us and continue to serve our needs
in a more than adequate way.

Classroom Experiences to Build ¢n

The first of the classroom projects
attempted with Ada centered in a course on

i52

simulation. Past work on event driven simulation
provided a platform for devcloping an event driven
simulator for digita! systems work. The goal of the
project was to apply Ada to a real problem that had
testable resuls.

This project afforded the experience of
separate comipilation, with team efforts for
specification and body development, and with
language lawyer attitudcs as described earlisz, The
basic concept of a generic insertion queue was a
principle feature of this work. Students were
delighted to learn of generic capacity to allow for
full featured programs, '

Implemented in R & R JanusAda the
project faltered with the large data needs and
expansive programs created by novice Ada
programmers. A good experience| allowed for
further work on Jades with a later group of
students. It is a manager’s responsibility to
maintain the documentaticn and code for such a
~ hiatus in activity. The one year |layover was
managed by the faculty and allowed for even more
programming learning as the p#oblcm was
resurrected later. . l

!

Creative Course Development ;
Teaching in this way was not a routine
thing. The courses on Ada were houscc# in a catchall
- Tepics in Electrical and Computer Engineering title.
The Ada topic was germane to the;course with
different problems chosen by students. .%.nother
feature of this course is that it is not a fixed number
of credits. In the four semesters that Ada was
taught under this rubric, semcster credits of one,
two, and threec were all used for student records.
Each student agreea on a leve! of work with credit
commensurate with the levzi. Projects allowed for
varied participation and students were able to fine
tune the workload and credits to their curriculum
needs. Minimum requirements of simple programs
ensured basic knowledge for the poorest performing
students. This topics course is documented in the
CREASE 6.0 catalog {5].

Experience behind us, a proposal was
prepared for the College of Engineering tc do an
experiment with our freshmen course, Introduction
to Algorithms for Computing. This course had a rich
history of teaching with clear goals and syllabus. It
had begun with FORTRAN aud progressed to
pascal. The textbooks used began with Tremblay

and Bunt [6] for the firct few years and then shifted
te Finger and Finger [7] for a little better
Engineering flavor, Students worked with central
time sharing computers and at the best times, with
selected students, projects were as complex as
image processing and separate modular compilation.
Turbo pascal came into vogue toward the end of life
of the course and became the compiler of choice
because it supported the Ada-like feature of units.

The proposal was to take that course, select
a group of students, and in une section cf five,
convert the course to the language Ada. In
concession to the FORTRAN users the pascal
sections used a textbook with some FORTRAN in
it. The Ada course used a weil written text by
Putram Texel {8]. This book introduced package as
the base concept and built on it throughout.

Projects in the Ada course were chosen to
exemplify Ada and at the same time parallel the
projects in the control sections. Exception handling
for input output processes, instantiation of generic
input output routines, overloading and other
featurcs of Ada wcre necessary inireductory
material .overed in projects. A final project using
a graphics utility iibrary was attempted. This
however faltered because of failures in the graphics
package.

Students were selected based on a self
selecting process. Experience in high school with

programming other that Basic was required.:

Predisposition to a computer intensive Engineering
curriculum and career was suggested. With this
simple guideline and some advisor assistance a
group of 17 freshman were identified as the Ada

guinea pigs.

The performance for programming and the
perceived capability of the students after the course
was positive. The philosophical approach that had
been tried and true in the previous pascal courses,
excelled in the new Ada section. The performanc.
of the students in the following course would be the
test of how well the approach actually worked.

Evaluating the Experiment

The second course on Algorithms, taught
outside of Engineering, in the Mathematics and
Computer Science Department followed in the
immediate next semester after the Introduction

3 11th Annual National Conference on Ada Tec;mology 1993

- course. This course zarolled studeats from (hree

introductory courses. First, students from the
introductory CS course were enrolled. Secondly the
pascal scctions of the introductory cnginecring
coursc fed students into the sccond level algorithms
coursc. And now for the first time the third group,
students whose first cxpericnee was in Ada, were
cnrolicd with the others.

" The pascal language was strongly
cntrenched in his Algorithms 11 course and posed
some challenge for the Ada students. While the
Engincering faculty felt they were prepared to
contityc their studics, the CS faculty balked,
unwilling to do comparative studics with two
languages. The Ada siudents requested help
sessions for the parallel comparisons allowing them
to do pascal work. The author agreed to the help
scssions under the proviso that the CS facully attend
to guide them in the right dircction. At first this
felt like the Ada teaching had failed to be broad
cnough. Howcever, as the help sessions progressed
the student. themselves took over the study, and in
thc manncr that 1 had hoped fer, they used the
philosophy that they had learncd studying Ada to
extrapolate the pascal needed to excel. The CS
faculty also began to get a positive exposurc to Ada
as the students would conclude that they nceded to
find a "diffcrent” method to do in pascal what they
knew rcadily hiow to do in Ada. As they worked
out the dctail they would implcment iheir idcas in
Ada and then study how to implement the samc
algorithms in pascal. - The CS faculty finally
accepted the Ada solutions as solved problems and
the Ada students were successful in the cousse.

Success Builds Interest

A continued effort for _topics courses
allowed for o wide vaiiety of experience with Ada.
Among the first topics to be studied in detail was
tasking. This was chosen because of the strong
intercst in realtime multi-processor applications.
Applications such as this are a regular part of the
production systems in the sieel mills in Northwest
Indiana. As a consultant, the problzms encountered
were largely with the tasks and interprocessor
communications when multiple processors were
involved. Thus, some study in tke area of tasks was
of interest.

One student in the tasking topic, chose to
implcinent an array of tasks to solve the classical

Vith Annual Naticnal Conference on Ada Technology 1993

Towers of Hanoi problum. He chose to use block
gray Aics for a two dimensional represemtation of the
solt on as it progressed. The genceral organization

o8 solution was to make cach ring a task ond
cach chanrcl for moving a ring on the screen a task.
The rings were then free to ~ave as the program
could identify a place for o cing to move and
allocate a channel task to carry the ring, The Ada
source code is not particularly difficult and is
available from the author.

Another Lopic dealt with extending the
functionality of Ada to matrix vperaiions. Students
were assigned the probiem of creating a set of
overloading get and put routines Lo get and put
vector and matri; data. An interesting note here iz
that the students were all taking Ada as a second
language and were weak in trere potions of
overloading. Though we had discussed overloadiag
in class the first cut solutions of all but a fuw
students failed to use the procedure names of get
and put to overload the gencric operators with ones
having vector or matrix parametcers. After s bricf
discussion in class, the students were quite receptive
to the suggestion that the proper solation was to usce
the names get and put as overloaded operators. A
further fuature suggested by students that complered
the input output package, added th. paramecters
standard to the gencsic input ontput procedures for
numeric types. The fore, aft, and e¢xp peramcters
were added as was a paramcter to control the
display of indexes as output was preseated. Default
values were included to make the routines conform
as much as possible tu the gencric input output
routines documented in the LRM.

The prompting index operation was mest

useful for intcractive output of array data. Since -

much of the programmirg done was for interactive
use, the prompt was sclected by student. as an

- important feature. Thus, the overall package for

vector and matrix input and output was
implemented and the students were then assigned
the problem of creating a matrix and vector
calculator. Students less able to creatc such a
program were allowed to do a sequence of get and
put operations with computations in between. The
matrix and vector operations were acquired in a
matrix package authored by Dr. Roger Lee and
moved by ftp from the Simtel20 Ada repository [9).

During the time that the matrix input
output operations were under development, another
section of students in the same semester accepted

154

the assignm~nt of perusing the network archives for
Ada packages of ust to our programming and
teaching. Though Valparaiso University was using
a limited BITNET connection at the time the
resourceful students were able to discover and
retricve scveral useful artifacts, For graphics
interactions a set of mouse drivers in Ada was
setrieved and these same students also retrieved the
array operations package for their fellow students in
the other section. One of the special features of
Ada is that the packages and others that followed
were directly compiled and linked into our
devcloping system. This was a -ather important
point for studerts who were just starting tc see the
big picture in large program developmeat. They
realized that the programmer does not r.ecessarily
need to create all of the code for a project. Som

code car: be acquired by network or parchased from -

vendors to the job done more rapidl;. With this
also comes an awareness for software license and
propricty of use,

Brief comments are in order for two other
Ada projects done in the topics area. The first was
done for a student who also was a bicycle designer
and fabricator. The students in the section with him
agreed to create a bicycle design progran. to select
from standard parts and create a bicycle. Special
parts were also included to allow for custom frame
sizing and custom wheef development and such.
The overall success of that project was limited.
Students working in that section were not as well
prepared (o take on an Ada task at the beginning of
the sermester and almost haif of thc semester
clapsed before the program design could begin.
Starting this late with a design for the program, the

code never rcached beyond multiple group

specifications being compiled successfully.
Implementation of only a few of the bodies limited
the testing of the prcgram to ounly a very few
fuactions. Students, even sc, reported confidence
that the large pregram they had started was well
designe and on the brink of completion.

The other project urdertaken was to
attempt tc create an Ada package for a DASH-8
and DASH-15 data acquisition system embedded in
¢ PC. The approach by this scphomore grovp was
to first choose betwzen creating new code and
translating the: original pascal drivers. They opted
to translate the pascal drivers, largely because of
their familizrity with pascal and less familiarity with
nardware features of things like data acquisition
systems. Again the completicn level was limited but

the student satisfaction was high.
A New Avpprosch with a New Tool

With the third year of topic teaching a new
software product was acquired. This tutorial
product, NSitc Ad:: {10, allowed for students to
study {opics in Ada in o computer directed manner.
The limited budget however, put some constraints
on the usc of the built-in examining functions.
Students needed to record their own quiz scores
and keep track of their own progress. Even so the
students progressed rapidly into a good knowledge
of Ada and software znginccring. The directed
learning was an excelient approach to instilling the
philosophy that had come to be a part of our
teaching. The material itself was orgenized into
chapters that followed the organization of the LRM.
The studenis studied the material in sequence from
start to finish.

Often times the students would get together
as groups and pursue a chapter in the tutorial
material quizzing and discussing the matters as they
went. They then would jointly solve programming
assignments and experiment with new ideas based
oa the programs completed. The style of learning
which resulted was supericr to the lecture and
discussion style that had been in use. With this
style the interaction between faculty and student
moved to a joint investigative phase. Now students
could assist in raising the level of language
understanding which the faculty was pursuing. The
more rapid acquisition of language capatility by the
students also allowed for more direct programming

“assignments,

The NSite product, as first acquired serves
quite well despite a significant number of
typographical and content errors in the tutorial
material. The NSite tool is at this time under re-
evaluation at Valparaiso as we consider a
competitive product LearnAda [11] which covers the
same necd. Independent of which tutcrial product
is used, the computer based tutorial will provide a
good method of introducing the language. 1t also
provides a rapid access to reference material both
in the tutorial text and by having a copy of the
LRM on line.

With students studying Ada by tutorial,
classroom time was free to pursue specific
programming topics. One topic that was studizd as
a means of understanding the Ada run time support

155 11th Annual National Canference on Ada Technology 1993

1

g

Y]

package was task preemption. The Meridian
compiler in use provides for task preemption and so
run time controlled time slicing and priority
assignments for tasks were usable. Simple
programs were written that displayed time slicing
and task priority behavior with preemption enabled
and with preemption disabled. The results were not
surprising for the experienced faculty, but were
powerful examples for students just starting to
consider how a computer could be usea in a malti-
tasking manner. The amount of time required to
do the example programs with the class would not
have been available if the class time would have
been used for Ada information lectures. Tae
computer based tutorial enabled these studies.

A Project That Works

Experience builds confidence and so it is in
the case of expcriences using Ada. The philosophy
of software engineering and the use of Ada became
ingrained with the faculty. As Ada-9X promised to
come into existence, the experience with Ada-83 was
continuing. During the Fall 1992 semester the most
recent assignment was made to a group of
Computer Science students studying Ada under
Engineering faculty supervision. These students
were given tke assignment of building a part of the
old JADES project in a new way. In order to do
event driven simulation an ordered queue of ~vents
to be processed needed to be supported. The
assignment given to the group was one of building
an Insertion Queue which contained elements and
invoked a user supplied order relation to insert new
items in the Queue for later removal in order. This
has direct application for sequencing eveuts during
simulation.

The creation of a generic procedure to
provide insertion queue capability proved to be the
most interesting assignment to date. The technical
task was not that difficult. What was interesting is
that the students were Junior and Senior level and
had a deeply ingrained pascal flavor to the their
style. Specific discussion about overloading, generic
objects and instantiation details was a regular part
of class meetings. Students began the semester with
pascal knowledge and used the NSite tutorial to
gain Ada knowledge. It took about five weeks
before the final form of the generic queue could be
envisioned by the students.

Once they had a clear view of the problem
it was divided into threc parts with Enqueue,

11th Annual National Conference on Ada Technology 1993

Dequeue, and QueueSize naturally dividing the
problem. The procedure Enqueue and Dequeue
and the function QueueSize were created as stubbed
separate bodies. This allowed for complete syntax
free compilation prior to finishing the detailed
algorithn, It also allowed for a complete
replacement of the internal storage method for the
sorted qusue, should performance become an issue

in the use of the Insertion Queue. Students were

dividud into three groups to complete the stubs and
the whole package was brought together with a test
program four weeks before the end of the semester.

Testing uncovered a problem wiih
unchecked deallocation which was corrected by a
compiler upgrade which was purchased earlier and
had arrived about a week before it was needed.
Some call that just-in-time delivery while in our case
it was just-dumb-luck timing. Another matter that
was uncovered in testing was discovered as the
separate bodies were compiled. The library
manager does not update the body executable code
for a separate body when that body is compiled

after the parent unit. The order of compilation is -

being looked into by Meridian and we expect that it
will be resolved cleanly. In the mean time we can
assume that what we are trying to do may be
outside the scope of the compiler and constrain our
compilation order to not recompile separate bodies
without first compiling the parent.

The Insection Queue was completed and
ested with a variety of qucue element types and
difiering order relations. It includes the excepiions
Full_Queue and Empty_Queue. This package is the
first generic package at VU that was completed well
and with full functionality and good documentation.
The assignment was smaller than previous
assignments, but the problem was solved in a more
elegant manner than previous solutions. Finally, the
tools of Ada were available to the students because
the faculty had enough grasp of the language to
coach them properly.

Curriculum Revision to Include Ada

As the Ada language experience developed,
the curriculum at Valparaiso University was under
revision. Four disciplines of Enginecring worked to
create a curriculum that would best serve each. As
part of that work a serious review of programming
teaching was done. Within Computer Engineering,
Ada was sclected as the fanguage for realtime
embedded systems teaching. This lead to a decision

15

to supplant pascal from the early curricuium and
use Ada as the first language. It also results in an
impact on the second and third year prcgramming
courses that need an Ada revision.

The other discipliaes of Civil, Mechanical
ard to a lesser extent Electrical Engineering
rerached the conclusion that teachingy about
programming was much less important in their new
curriculum. This reflects the thinking that programs
needed for discipline specific activities are avaiiabie
commercially, and little or no programming will be
nezded to apply them correctly. Thers is even the
sentiment that when programming is required it can
be employed from knowledgeable persons on an as
needed basis. <

Those conclusions might be better
understood if one reviews the results of the
curriculum discussiors. Pascal was deeply
entrenched and pascal tends to make programming
casy as compared to using Basic or FORTRAN.
Thus the Engineering professors were in a better
situation with pascal than they had ever been.
Secondly, there was a strong sentiment that
FORTRAN should be taught to ergineers. The
arguments for FORTRAN reduced to *There are a
lot of FORTRAN programs running." and "Most of
the other schools arc doing it.* While these
arguments are irrefutable, they do not, in the
authors opinion, warrant continuing with a language
that has successfully completed its service.

There also surfaced a sentiment that
Valparaiso University College of Engineering should
not be the leader in the area of Engincering
Software teaching revision. Noting that, the
decision was finalized that Computer Enginsering
faculty will teach prcgramming for Computer
Engineers and Electrical Engineers and that Civil
and Mcchanical Engincers will take computer
literacy courses specifically about software in their
discipline. This result is now being implemented
and for the time being seems to be the correct
decisic.1 for our school.

Thus the Computer Engineering course,
Algorithms for Computing, based on Ada, will be
taught for the first time in the fall of 1993 to the
first wave of Sophomore students studying in the
revised curriculum. They reach this first course as
Sophomores because we chose to introduce
hardware concepts first in the second semester
Freshman year immediately after the major is

declared in Computer Engineering. Using logic
design as the basis, it is expected that benefits will
accrue for software engineering teaching in the first
programniing course.

Directly coupled to all of the Ada

- development is the decision to use Ada to teach

embedded systems design. The Computer
Engincering laboratory sequence and two elective
courses address the issue of high level language
usage for embedded systems in various ways. Pascal
was in use for ten years and served well as
described earlier. With the MC6309 processor, and
a locally extended pascal native code compiler,
students were able to create significant products for
course work and for sponsored development
projects. In one case, the students were able to

demonstrate the vaiue of high level language -

development over assembly language for a small
company. The dramatic decrease in expected
development time was a convincing experience for

the project Engineer.

With pascal working so well, it was no easy
decision and is no easy task to work toward a major
technology shift. Yet, with the better featuies found
in Ada and the better cpu capacity of the MC68000,
the time was right to make some changes. The
vendor support from Motorola and from Ada
compiler vendors is growing as we make the
nocessary effort of contacting them and exposing
our needs. This continues to suggest that we are
making progress.

The shift to the MC68000 is ncw complete
with the installation of MC68000 based systems for
software and hardware developmeat. These systems
were built in conjunction with the University of
Toroanto where they were developed. The features
of the boards include 2Mbytes of memory, both
AUI and BNC cthernet ports, four RS-232 ports,
printer ports \and parallel 1/O connectors. The
network connection allows the boards to be
supported - from our growing workstation
eavironment.

Presently the programming for laboratory

and course work is being done in C and assembly
language. Programs are compiled or assembled on
a Sun 3/60, an MC68020 based workstation. The
compilers and libraries are part of the package
reccived from University of Toronto. Object
modules are loaded into the target system by ftp
connections via the ethernet. It is also possible to

157 11th Annual Nacional Conference‘ on Ada Technology 1993

load object mudules trom the TTY ports.

While C is not the language of choice, it is
the only compiler at VU at this time capable of
generating MCS8000 code. Negotiations and
financing are in progress to place an Ada compiler
on the workstations and to develop the methods of
compiling Ada code and loading it by ftp cornection
as is currently being done with C. Such operation
is available for purchase and is actively being
pwisuad. ‘

Ada Blossoms

The blossomirg of Ada at Valparaiso
University has been a long process. Ada is not yet
in full bloom though critical junctures are past.
Recent agreements assure better funding in the
future and support for faculty development to a
higher level has recently been funded. The demand
for Ada learning continues to grow among our
student body. That demand may also grow in the
work place as the students and vendors get the Ada
message to the managers.

There is no substitute for interaction with
colleagues in other places who are doing Ada
teaching. Thus, the support for attending ASEET
and ANCOST sponsored meetings in past years and
the recent support for two of us to attend Tri-Ada
is both useful and necessary. The effective return

on the investment in our case was greatly enhanced -

by participation in tutorials at the meetings. Over
the years, tutorials by Engle and Dominice [12],
Cook and Vega [13], and Rogers [14] were all
attended and have contributed significantly to the
positive Ada experience.

Now the plans are frozen which will allow
us to werk toward a goal. The obstacles of
development have been removed and the new Ada
based, Algonithms for Computing course is being
readied. The impact on the second level courses is
anticipated. The compiler for laboratory use will
grow out of the current funding mechanism.

So once again it is time to begin. Begin,
because up until now Ada teaching was an
experiment which was providing great experience.
Now the students’ learning and career development
wili depend on the results. This is a serious matter
and we do not take it lightly as we begin teaching
introductory programming with the language Ada.

11th Annual National Conference on Ada Technology 1993

Ada-83 is now ten years old. We have followed it
and used Ada-83 and as we begin teaching it in our
mainstreara curriculum, we expect to migrate to
Ada-9x easily and painlessly.
Conclusien

Ada knowledge is not easy to acquire.
Experience is needed to build the confidence in
faculty that Ada is neither bigger nor smaller than
other programming laaguages when beginning
teaching is considered. There is a limited amount
of information that can be imparted to beginning
students. It is important that the information be
weli selected and well presented to foster a quest
for knowledge. With Ada, software engineering and
philosophical approaches to programming,
Computer Engineering students at Valparaiso
University will be quite ready for the future
development and application of computer hardware
and software.

Bibliography

(1) Sammet, Jean, "Why Ada is not Just Another
Programming Language,” Communicatons of the
ACM, Vol 9, No 8, August 1986, pp. 722-731.

2] Bohlmann, Rodney J., "A Taxonomy Approach
to Introductory Programming”, IEEE Transactions
on Education, February 1993.

[3] R. R. Software, JANUS /Ada Compiler for 80:86
Computers, Madison, WI.

[4] ANSI/MIL-STD-1815A, Ada Programming
Language, January 1983.

[S] CREASE 6.0 Catalog of Resources for Education
in Ada and Software Engineering, Ada Information
Clearinghouse, Lanham, MD, February 1992,

[6] Tremblay, Jean-Paul and Bunt, Richard B., An
Introduction to Computer Science an Algorithmic
Approach, McGraw Hill, Inc., 1979,

[7} Finger, Susan and Finger, Ellen, Pascal with
Applications in Science and Engineering, D.C. Heath
and Company, 1586.

{8] Texel, Putnam, Introductory Ada, Wadsworth,
Inc., Belmont, CA, 1986.

TR

158

159

. Bibliography, Conth:ued

[9] Lee, Roger, Matrix_Package, Version 1.0, Naval
Air Development Center, Advanced Software

Technology Division, Warminster, PA, February

1984,

[10]) Network . Sclutions, Integrated Training
Environment for Ada, NSITE-Ada, Version 2.1,
Herndon, VA, December 1990,

[11] Actech, LeamAda for MS-DOS, Carlsbad, CA,
1992. .

[12] Engle, Charles B. Jr. and Dominice, Tony, Ada

- from a Management Ferspective, and McXee, Cary,

DoD-Std-1838 and other Environment Interfaces,
Fourth Annual ASEEY Symposium, Tutorial Hi,
Houston, TX, June 1989.

[13]Cook, David A. and Vega, David, 4da Taskingl

and Generic Program Units, Sixth Anrual ASEET
Symposium Tutorial, Alexandria, VA, September
1991. '

[14) Rogers, Patrick. "Realtime/Embedded Systems
and Ada", Volume 1, Tutorial 3, Tri-Ada 92,
Orlando, FL, November 1992, pp. 105-260.

About the Author

Dr. Bohlinann is an Associate Professor of
Electrical and Computer Engineering at Valparaiso
University. He specializes in realtime systems and
teaches coursss in the areas of computer
architecture, computer networks, and VLSI design.
He is a Professional Engineer in Indiana, a member
of IEEE and IEEE Computer Scciety and is the
Vice Chairman of the Calumet Section of IEEE.
He is also a member of ACM and ACM-SIGAda.
A cousultant in realtime systems work anrd
microprossescor development, Dr. Bohlmann may

. be reached by e-mail as rjb@gellersen.valpo.edu.

11th Annual National Conference on Ada Technology 1993

T A CaRte 0 e ey

T T .

NEXT GENERATION COMPUTER RESOURCES

(NGCR)
PROJECT SUPPORT ENVIRONMENT STANDARDS
(PSES)
Tricia Obemdorf Carl Sclxmx;edekamp
Naval Air Warfare Cer.ter Nava! Air Warfare Center
Aircraft Division Warminster Aircraft Division Warminster
Codge 7031 Code 7033
P.O. Box 5152 P.O. Box 5152
Warmninster, PA 18974-0591 Warminster, PA 18974-0591
LCDR Vincent Squitieri
Space & Naval Warfare Systems Commarnd
SPAWAR 2312B4

Washington, D.C. 20363-5100

SUMMARY

The U.S. Navy has embarked on the Next Generation
Computer Resources (NGCR) program to fulfill its
need for standard computing resources. The program
revolves around the selection of inicrface standards in
six areas. One of these areas is project support
environments (PSEs). The projects supported by ihe
environments develcp, enbance or maintair computer-
based systems or products. These interface standards
should be useful for projects focused primarily on
software development, hardware deve!opment or the
concurrent duvelopment of hardware and software.
They will include suppost for Ada. This prper
discusses the approach and plans for the selection of
these PSE standards and the issues that must be
addressed for the effort to be successfui.

INTRODUCTION

The U.S. Navy has embarked oa the Next Geueration
Computer Resources (NGCR) program to fulfill its
need for standard computing resources. The program

takes an open systems architecture approach and
revolves arcund the sclection of interface standards in
six areas. One of thesc areas is project support
environments (PSEs). The projects supported by the
FSEs develop, enhance, or maintain computer-based
systems or prcducts, including those in which Ada is
used. These interface standards should be useful for
projects focused primarily on software development,
on hardware development or on the concurrent
development of hardware and software.

BACKGROUND
NGCR

The Navy has a long history of developing and using
standard computer products. When computer
technology was in its infancy, the Navy wielded
significant influence in the market, setting its own
requircments and developing its own computer
desigrs, including Instruction Set Architectures
(ISAs). Standard compnter implementations (i.e.,
buying "boxes”) ard upward compatible ISAs bave

.been the foundation of the Navy's compute: policy.

11th Annual National Conference on Ada Technology 1993

160

This policy has been motivated by the fact that
software can adapt a common comnputer design to
meet mary different applications.

But the Navy's current computer standardization
approach is not techaologically competitive in today's
environment of rapidly improving technologies. The
Navy acquisition and budget process takes a long time
to field new standard computers, so long that the -
produced technology is often old (compared to
commercial technology) by the time it is fielded. The
obvious logistics beneiits associated with standard
hardware are offset by the inability to field current
tecknologies. In addition, the DoD in general no

longer is a major factor in the marketplace and cannot -

dictate what it wants or nceds. The fact that the
defense budget is shrinking means that the Navy can
no longer afford to go it alone and instead needs to
leverage off of the commercial marketplace..

The objective of the NGCR program is to restructure
the Navy's approach to acquisition of standard
computing resources to take better advantage of
commercial advances and investments, It is expected
that this new approach will result in:

. reduced production costs (through larger
quantity buys)

. reduced operation and maintenance costs

. avoidance of replication of Navy RDT&E
costs (for separate projectsto
develop similar computing
capabilities) and

. more effective system intcgraticn.

. The proposed new approach is an open systeas
approach based on the establishment of commercially-
based interface standards in six areas: multisystem
interconnects, multiprocessor interconnects, operating
systems, database management systems, graphics
standards, and project support environments, This
open systems approach is ccnsistent with the trend
throughout the industry,

The NGCR interface standards will be based on
existing industry standards with multi-vendor support.
In cases where existing industry standards do not fully
meet Navy needs, the approach is to further enhance
the existing standards jointly with industry. This will
assure the Navy of a widely-accepted set of
commercially-based interface standards.

Application of these interface standards will change
the Navy's approach from one of buying standard
computers to one of procuring commercial computing
resources which satisfy the interfaces defined by the

~ standards. These standards will be applied at the

project level rather than a Navy-wide procurement
level,

PSESWG"

The effort to establish the PSE interface standards
was initiated at the start of 1991 with the inaugural
meeting of the Project Support Environment
Standards Working Group (PSESWG - pronounced
"peace-wig"). As with all of the NGCR working
groups, this is a joint industry/academia/government
group of technologists with backgrounds in the
requirements for and issues regarding PSEs. This
Navy-led group is committed to the identification of
PSE interface standards in the form of a military
standard, with an accompanying military handbook, by
1998.

' APPROACH

Some of the approach taken by the PSESWG is
dictated by the NGCR program. Other aspects are
driven by the necessities cf the PSE area. The
following are the key elements of the PSESWG
approach. ‘ "

1. Joint industry/academia/government working

group

All of the NGCR standardization efforts are
accomplished by working groups with strong
industrial, academic and government participation.

- The PSESWG is well-balanced, including members -

from the research community as well as the PSE user
community, It draws heavily on industry expertisc as
well as that available from all facets of the
government. All three services, the federally-funded
research and development centers, and the National
Institute of Standards and Techrology (NIST) have
been represented at meetings. This balance provides
technological strength while assuring the group that
there is a scund balance between the perceived Navy
requirements and the directions in which industry is
heading. .

161 11th Annual Yational Conference on Ada Technology 1993

[P . -

2. Standardization on interfaces, not products

One cf the keys to the NGCR program is to get away
from standardization on products and to move
towards open systems. To achieve this means that the
empbasis must be on interfaces, services, and
-protocols, not specific vendor implementaticns, even if
those implementations have been created according to
Navy specifications. There are plans to maintain
Certified Product Lists for some of the NGCR
standards, and it may be appropriate at times for the
Navy to make large procurements of products that
meet the standards. However, the important thing will
always be the interfaces rather than the products. In
this way the Navy can enjoy the benefits of new
technology and increased interoperability of it
systems. :

This general NGCR principle applies to the PSE
effort as well. It is sometimes difficult for PSE users to
think of their systems in terms of the interfaces

between the components. But doing so is key to being -

able to include the best of the available tools in Navv
project PSEs and tc achieve productive iniegration of
the PSE components, even when they are from a
variety of vendors.

3. Selection of existing industry standards

Another emphasis in the NGCR program is on the
ability of the Navy to become a part of the industry
marketplace, thus being able to take advantage of
industry inaovations and advances in technology. To
achieve this, the program focuses on the selection of
existing industry standards whenever possible. We will
often fird that existing industry standards do not quite
provids all of the features required by the Navy, so it
is rommon for the working groups to become active ia
the industry organization respoasible for a standard
that has been selected. If there is a firra requirement
for an interface for which no viable industry standard
can be found, the working grour will decids whether
the need is strong enough to try to find industry
interest in convergiag on such a standard, Qnly as a
“last resort will a working group creatc its own unique
interface; it will often be preferable to simply defer
the requirement until an indusiry standard emerges.

For the PSESWG this ¢: even more straightfoiward
than for the other groups. There is most often little to
distinguish a DoD PSE from that required in any
other setting, Smali parts (¢.g,, the requirements to
support Ada) may be different, but they do not affect
the essential nature of a ¥SE nor most of the

interfaces needed to support PSEs. The final PSE
standard is expected to refer to new and existing
environment interface standards and to be usable in
the procurement of Navy (and other) systems in 1998.
The initial focus of the PSESWG is on identifying
those areas of support environments that should have
standardized interfaces and for which industry-
accepted interface standards can be availabls within
the project's time frame. ' :

4. PSESWG organization

The PSESWG has been organized into subgroups and
teams. The subgroups are: Reference Models,
Available Technology, and Approach. The Reference
Models Subgroup is working in cooperation with the
NIST Irntegrated Software Engineering Eavironments
(ISEE) effort to produce a full environinent reference
model. PSESWG intends to usc the model for
identifying PSE interfacs requirements and describing
PSE technology. The Available Techuology Subgroup
is collecting and reviewing descriptions of existin.g
environment interface technologies. The Approach
Subgroup is planning the organizatica and operation
of PSESWG, including procedures for the selection of
baseline standards.

The PSESWG has recently organized teams which are
more focused upon standard procduction and specific
techuology areas. (PSESWG members generally
participatc on one subgroup and one team.) The
initial teams are Data Interfaces, Framework, and
Standard and Handbook Writing. The Data
Interfaces Team is tasked with investigating the data
interchiange technclogy area and its subareas,
producing an interface requirements dccument for the
technology, and producing a list of candidates for
selection as part of the developing standard. The
Framework Team has tasks similar to those of the
Data Interfaces Team for the framework techrology
arca. The Standard and Handbook Writing Team is
tasked with actually writing the draft military standard
and draft military handbook.

5. PSESWG Standard

The Project Support Environment Interface (PSEI)
standard will not define standard tools or tool sets for
use in Navy system development. Instead, the focus is
on tool integration mechanisms (including
frameworks), data exchange mechanisms, and the
logical contents of project data repositories. An
integrated (harmonized) set of environment interface
standards is important in the success of NGCR.

11th Armual National Conference on Ada Technology 1993

162

Technically, the adoption of standards for PSE
interfaces, services, and protocols will provide a means
for bettcr integration withiu a PSE and better
interaction between different PSE implementatiors.
Procurement of PSEs will be aided by making their
specification easier and by lowering costs for coximon
PSE components. '

PSESWG effort to-date has focussed on three main

products”: the Available Tecinology Report, the PSE -

Reference Model, and the initial selection of some
PSE-related standards.

Available Technology Report

This report is a compendium of technolegies that are
available today that are believed to have relevance to
the PSESWG effort. Most of the entries describe
interface standards, both recognized and de facto,
although a few describe products that appear to
address aspects of interfaces that go beyond the
services provided by existing standards or interface
areas of intersst for which no standards are known.
The technologies degcribed are presented in the
following catc:gories5 :

Task Management Services
User Interface Services
Operating Systems Services
Network Services
Framework Services
Data Integration Services
(including : General
Administration,
Commerce, and
Transportation
" Documentation
Electronic Design
Graphics
Hardware Design
Interface
Description
Product

1 AR PSESWG documents described in this report are
available by contacting the authors.

2 The reader will note that this list of categories is not
completely compatible with the categories in the
following scction from the Reference Model, This was
not unexpected, as the two pieces of work procseded
in parallel, and the categories wiil be reconciled when
both documents are mature.

Description
Software
Engineering
Time)
" Data Repacsitory '
Security Services
PSE Reference Model

Before it is possible to select interface standards, it is
first necessary to understand all of the interface areas
for which it might be beneficial to identify standards.
To do this requires a thorovgh understanding cf PSEs,
both as they exist in the current state-of-the-practice
and as they are expected to exist in the future
timeframe of the military standard. The approach
PSESWG has taken to this problem is to derive a
reference model for a full environment, as no gene:ic
on, existed at the initiation of the PSESWG effort.
This reference model has bezn based on the work of
the European Computer Manufacturers' Association
{ECMA) and NIST, which resulted in the Reference
Model for Frameworks of Software Engineering
Environments! "), These groups have contributed to
the PSESWG model. Material has also been borrowed
from the POSIX P10P2‘3.0 Guide to the POSIX Open
System Eavironment'“!, The remainder of the
reference model originated with the members of the
PSESWG Reference Model Subgroup, making use of
inputs from other organizations to the greatest extent

possible.

The PSESWG Reference Model provides a catalogue
of services that covers the functionality expected of a
fully populated PSE. These services are divided, at a
high level, into those that are part of the framework

. and those that are directly accessed by the end-user.

The Framework Services, most of which are taken

‘from either the NIST/ECMA reference model or the

POSIX model, are categorizcd3 by:

" Operating System Services
Object Management Services
Policy Enforcement Services
Process Management Services
Communication Services
User Iaterface Services
User Command Interface Services
Network Services

3 As of this writing, the reference model has not been
completed. Therefore, this list is from version 0.8 and
some anticipated changes for version 1.0 and is subject
to change.

63 11th Annual National Conference on Ada Technology 1993

] | L] [—_—] mann [] —— o —— m_—— —r— e ma— am— amann — ——
. . :
‘ , . .

The End-user Services are categorized by:

Technical Engineering Services
System Engineering Services
Software Enginecring Services
Life-Cycle Process Engineering
Services

Technical Management Services
Configuration Management Services
Recuse Management Service
Metrics Services

Project Management Services
Planning Service
Scheduling Scrvice
Estimation Service
Analysis Service
Tracking Service
‘Presentation Service

Support Services
Common Support Services
Publishing Service
Presentation Preparation Service
~ User Communication Services
Administration Services

Once version 1.0 of the reference mode! has been
published (February 1993), the next step will be to use
it to identify the interfaces that are required by all of
these services. That list of interfaces will be culled
down to those interfaces for which standardization is
likely to have a benefit. This list of targei interfaces
will then be prioriiized and pursued for the remainder
of the duration of the PSESWG.

Initial Selection of Standards

|

{
Because there are so w‘iry many PSE interfaces for
which standardization might be of interest, it was felt
that some sort of start nieeded to be made on them,
despite the fact that the reference model was not yet
ready. It was agreed that there are a number of basic
"platform"” interfaces that are provided by existing
popular standards that cauld be casily selected without
any detriment to the likely future PSESWG selections.
These are standards for such things as operating
system and network interfaces, whick do ot heavily
influence ihe characteristics that distingvish one full
PSE from another. The PSESWG only considered
making these early selections in interfacs areas for

which "ohvious" standards existed, thus making the
choice fairly simple.

The initial sct of standards recommended for inclusion
in the draft PSEI standard and the inierface areas they
address are:

POSIX.1 and POSIX.2 (operaring system)

X-Windows (user interface protocols; the
decision on a toolkit was deferrcd for
now)

PHIGS (graphics)

GOSIP (networks)

This set of initial sclections is being published as a
laboratory technical report and will be widely
distributed throughout the Mavv and to all members of
PSESWG and other iaterested DoD apencies. These
selections are the first increrent for the eventur!
PSESWG military standard, and they will be available
for anyone's use. They are documented in *“Toward a
MIL_STD and MIL-HDBX for Project Support
Environment Interfaces.”

PLANS

The target date for the PSESWG standard is 1993,
The initial selections of the whole group have been
followed by ih= concentrated work of the Framework
and Data interfaces Teams to more thoroughly
explore these two areas, coming up with ways to use
the refereace model tv determine the interfaces that
are of interest. Each of these groups is charged with:

. identifying the interface areas to be
addressed

. formulating requirements for them
. identifying viable candidates for them

. and conducting an in-depth evaluation
process to determine the best
interfaca standard to select for rach.

These selections will be reviewed and concurred with
by the whole PSESWG and then are subject to the
approval of the NGCR program office. A military
standard with an accompanying military handbook will
be formulated and exparded as each selection is made
and approved, resulting in a formal MIL-STD and
MIL-HDBK that will be submitted for formal tri-
service apnroval late in 1996.

11th Annual National Conference on Ada Technology 1993 164

ISSUES

There are many issues that need to be addressed in
the course of such an ambitious undertaking as the
PSESWG standard. Here are a few that are likely to
be of interest to anyone following this work.

Ada

The NGCR program is committed to Ada. All of the
application program interfaces (APIs)” that are
selected are expected to be provided with Ada
language bindings. However, the reality of the
marketplace is that there are few PSEs in existence
today that rely sclely on Ada interfaces of any kind,
and there are even fewer bora fide standardization
efforts that put a significant emphasis on Ada. Thus
there are at times going to be conflicts between the
desire to support Ada and the desire to adopt industry
standards.

In the case of the PSESWG this apparent conflict
needs to be further explored. On the one hand, the
PSESWG must clearly support the functioning of tools
intended to support the development and maintenance
of Ada artifacts; these include, for example, compilers,
linkers, program libraries, debuggers, and rrogram -
design language (PDL) tools. But it is not necessarily
true that all tools that support the development and
maintenance of Ada artifacts must themselves be
written in Ada or dependent on Ada bindings for PSE
interfaces. On the other hand, examination of the
marketplace indicates that the majority of work and
products available (including the standards produced
by accredited organizations) do not often provide Ada
bindings for their interface standards.

This has put the NGCR program in an awkwara
position. While it is committed to Ada, it is also
committed to helping the Navy become active
participants in the PSE marketplace, which requires
adopting industry standards that are more often in 'C,
Thus the PSESWG (and NGCR program in general)
have had to accept that both Ada and 'C' language
bindings will be important and will need to be
supported by tke interface standards that are chosen.

4 APIs are a subset of all possible interfaces; all APIs
are interfaces, but there are other kirds of interfaces
that do not require the procedural syntax of a
programming language and so are not provided as
APlIs,

Community Diversity

The environments comreunity is very diverse; it could
even be said to be in a state of upheaval. Being a very
young community (generally less than i5 years), there
is little agreement on definition of terms. The.e is
even a lack of consensus on the definition of what
encompasses an environment or what its predominant
compounents are (or should be). There are many
relevant standardizaticn efforts, but few have been
originated by the environments community itself.
There is a distinct lack of coordination, whicn is
compounded by the {act that researchers from
disciplines other than software engincering (e.g.,
CAD, manufacturing engineeriag, and concurrent
engineering) are converging on similar ideas without
seeming te realize the work that the software
engineering community has alrcady done. An example
of the diversity is found in the use of languages, where
DoD related experimertation and implementations
often make use of Ada, but industry makes extensive
use of 'C (including further divergence into new
variations, such as C+ +), while the academic
krowledge-based community often goes for LISP. In
order for real progress to be made, esp=cially in
directions that will make interface standards possible
and useful, such efforts need to come together and
approach the problem in a coordinated, cooperative
manrer. It is hoped that one effect of the PSESWG
reference mode! work will be to provide a backdrop
against which such cooperation can take shape.

Prcfiling

Stzuda.ds often have options associated with them. It
is also possible that, when combining more than one
standard in an effort to satisfy the needs of a whole
system, there will be slight incompatibilities between
some of the standards. These incompatibilities must
be addressed to make the suite work together. The
process of examining the individual standards in a
suite with regard to their interactions and
interdependencies and reconciling any differences is
called profiling. Evcryone who has ever designed and
implemented a system based on the combination of
two or more standards has created at least an implicit
profile, but the explicit job of combinin 3 several
standards and deciding the necessary reconciliations
formally is a fairly new activity, and little is really
known about how ¢to do it.

The PSESWG standard will be such a profile, as it will
cover many different interface areas and will cite rany
diverse interface standards, Thus the issue of profiling

65 11th Annual National Cornference on Ada Technology 1993

will be a significant one for the PSE standard. There
are likely to be few obvious problen:s with the few
standards that have alicady been selected, as they
covcr rather distinct areas. But even with these there
are considerations of options to include or exclude and
parameter ranges to determine. And, since both
POSIX and GOSIP have their own ideas about such
things as titae, it will be necessary to be sure that these
notions can be compatibly profiled. As the number of
standards in the PSESWG suite grows, addressing
these compatibilities will become increasingly difficult.
It may well prove to be in the best interest of
PSESWG to work with other standards groups whose
goals are to create similar profiles of standards that
are of mutual interest,

Contentious Interface Areas

There are a few icterface areas that were fairly simple
for the PSESWG to address. Most of the rest will be
much more difficult. There are at lcast three kinds of
problems that can arise in trying to select one
standard for each interface area:

1. Sometimes the easiest situation may be waen there
are two or more standards that clearly cover the same
services and functionality. Then a fairly straight-
forward evaluation process will result in determining
one to be technically and programmatically superio:,
This is most likely tc happen in cn interface arca ihat
is well-understood and for which products liave existed
for some time.

2. In other sitirations there will be scveral cheices, but
they seem to generaiiy roara all around the same
territory without bzing clearly comparable or, at times,
clearly distinguishable. Included in this category are
those situations in which there is a great deal of

. diversity and the marketplace has yet to establish any
clear trend. This is most Likely to happen in an
interface area that is new but has quickly become very
popuiar, such as bas happeried in the windowing arena
in the last few years.

3. In yet other situations, there may be one or more
choices, but none of them seems to do the whole job
well. It is possible in this situation to find that two or
more of the possible choices complement one another
in such a way that choosing them both to support
distinct parts of the interface area would be sensible.
This is most likely to happen in an interface area that
is being researched or slowly explored in other ways,
but for which no consensus answers of what's right or
works have emerged.

The PSESWG can expect to find itself in all three of
these situations at cae time or another in the near
future. Whaen it does, there are several options that
can te consideied:

. Decide: If the standards choices are there
and the evaluation can be performed with

- satisfactory results, then making the
sulection will kelp the incremental
adveacement of the standard

. Defer the decision: If there is still time (as is
the casz right now, for example, with
choosing a windowing toolkit), it may be
most prudent to simply sit out and wait a
while for the industry and the marketplace
to sort themselves out. A ot can change in a
year or two, and waiting is likely to be
preferable to selecting one that turns out to
be out of favor in a couple of years,

. Conduct further analysis: If things seem just
too confused or overlapping, it might be best
to find other ways to analyze the area or
other angles te take on the requirements to
make them more suitable to making a
selection. Perhaps some essential
distinguiching characteristic between some
of the available candidates was missed in the
development of the requirements. If that
element can be discovered and included in
the evaluation process, it may become more
clear what choice to make.

. Stir the pot: In some cases, what is needed is

some pro-active participation in the

- standards community. If things are not
gelling in industry, perhaps some attempts to
get importart groups talking with one
another or listening to the
government's/user's needs will help to treak
the logiam and get the necessary
cooperation or attention to the matter
moving,

~Gaps®

Despite all of the efforts that can be made to address
the selection of standards in all of the intezface areas
that are of interest, the PSESWG will inevitably
encounter some interface areas for which there are
simply no standards, despite the apparent PSESWG
desires and requirements for them. In this case, some

11th Annual National Conference on Ada Technology 1993

{

166

- hard choices will have to be made between at least
three possible alternatives:

1. It should first be carefully considered whether or
not the requirement that is not being met is real. The
fact that there is no standards activity in the area may
be an indication either that industry does not consider
it to be a problem or they are content with current
" (non-standara) soluticns. Re-examination of such a
. requirement could result in the PSESWG dropping
the requirement (or at least admitting that reality
suggests being willing to defer it significantly). If such
re-examination confirms the importance of the
requirement, then other approaches can be engaged.

2, For an important requirement that cannot be
deferred, it is possible to try to drum up industry
stpport and enthusiasm for addressing it. This is the
first choice of the NGCR program, since the desire is
to adopt industry staadards. It may be that the
PSESWG will have to put some resources (e.g., -
providing a working group chair or doing the
paperwo:k necessary to get a new group or work i item
approved) into getting something rolling, tut that
would be far preferable to the only remzining
alternative,

3. If by some chance the PSESWG is faced with a truly
urgent requirement for which no interest can be found
in industry, it may be left with no choice but to
attempt to provide its own unilateral interface for the
area. This could be done in parallel with trying to
drum up industry support, so that the interface
developed could be provided to the new group as a
strawman with which they caa start their work. This is
the choice of absolute last resort, and it is not .
expected that PSESWG is likely to be forced to this.

CONCLUSION

The PSESWG is following the general tenets of the
NGCR program in selecting a set of PSE interface
standards. An initial selection of a few standards has
been made and documented. There is no direct
PSESWG experience with the application of these
standards, although support environiaents can be
found today that make use of products that conform to
the selected standards or others very similar to them.

This program is consistent with a significant move
throughout the industry to open systems and to the
use of industry interface standards. The expected
benefits include time and cost savings and increased
quality, because usable products that conform to the

standards will be more readily available, more
technologically advanced, and more easily mtcgfted
together. The recommendations from a report

the Computer-Aided Software Engineering (CASE)
tool marketplace included a suggestion that it was
important "to gain compatibility among platform
vendors a. the environment level” and to "drive
commercial standards - do not invent anything new if
there is a commercial alternative.” These are the
objectives of the PSESWG.

The experiences of the other NGCR working groups
also indicate that this program is moving in the right
direction. Two other standards - SAFENET II (bascd
largely on FDDI) for networks and the backplare
standard (based largely on FutureBus+) - have becn
well received in the Navy and elsewhere. Even before
their final formal approval they were being followed
by Navy projects, indicating a wide-spread interest in
the anticipated benefits and a real willingness to give
this approach a try.

The PSESWG reference inodel has also been well-
received so far. It is hoped that it will help to provide a
road-map that the entire PSE industry can accept and
that will help to sort out the difficulties in realizing
good integrated environments that are built from a
variety of vendor products.

BEE ERENCES

[1) Reference Model for Frameworks of Sof‘ware
Engineering Environments, NIST 3pecial Publication
500-201. Computer Systems Laboratory, National

Institute of Standards and Technology, Gaithersburg,

MD 20899; available from the Superintendent of
Documents, U.S. Government Printing Office,
Washingten, D.C. 20402. Also available as Technical
Report TR/55, 2nd Edition, of the European
Computer Manufacturers' Association (ECMA).

(2] Draft Guide to the POSLX Open System
Environment (P1003.0), Technical Committee on
Operating Systems and Application Environments of
the IEEE Computer Society, 345 East 47th Street,
New York, NY 10017,

[3] CASE Vendors’ Handbook, Dataquest, 1290 Ridder
Park Drive, San Jose, CA 95131-2398. 23 July 1991.

 11th Annual National Conference on Ada Technology 1993

Ms. Oberndorf graduated from Orcgon Staic
University, receiving a Bachelor of Science degree in
Matheraatics/Computer Science, and then aitended
the University of Calitornia at San Dizgo, receiving a
Master of Science degree in computer scie' <. She
has worked for the Navy ever since, first at the Naval
Ocean Systems Center in San Diego, where she
helped lead the original euvironments work thers in
the mid-1970's. She led the tcam that daveloped the
Common APSE (Ada Programming Support
Environmen) Interface Set (CAIS-A). After moving
to her currert location, shie became involved with the
NGCR program, first chairing the Operating Syster:
Standards Working Group. She ncw serves as the
civiliant co-chairman for the Project Support
Environment Standards Working Group.

Dr. Sckmiedekamp -eceived his BS ard PhD degiees
from the Uriversity of Texas at Austin, both in
Physics. He was an Assistant Professor of Computer
Science at Drexel University in Philadelphia.
Schmiedekamp has been a Computer Scientist at the
Navy laboratory in Warminster, PA since 1984. His
work has been primarily in the areas of software
engineering environreents and staedardization. He
was a member of the NGCR Operating System
Standards Working Group where he wes ediior for a
Reference Model of Real-Time Operatirg Systems.
Currently he is a member of the NGCR Project

" Support Environment Siandards Working Gioup,
where he chairs the Approach Subgroup and the
Standards Writing Team. His rzsearch interests
include standards, reuse, metrics and

multi-criteria optimization.

LCDR Squiticri graduaied from the Messachusetts
Instituts of Technology and received a Bactelor of
Science degree in Mechanical Enginecering. He was
commissioncd an Ensign in the United States Navy in
June 1980. After several tours and cruises, he attended
the Naval Postgraduate School in Morterey, Cs. and
received a Master of Science degree in Electrical
Engineering, He served his department head tour on a
west coast destroysr and made a Western Pacific
cruise. Hz is currentiy assigned to the Navy's Next
Generation Computer Resources Program at the
Space aad Naval Warfare Systems Command in
Washirgton, D.C, He serves as the military co-
chairman for the Project Support Environment
Standards Working Group.

Tith Anuual National Conference on Ada Technology 1993

168

NICIS8: i\ NATURAL INTERFACE FOR A COMBINED LANGUAGE SYSTEWM

John H. Gray and James W. Hooper
‘ . Corputer Science Department
The University of Alaktama in Huantsville
‘Huntsville, Alabama 35899
{205) 895 - 6515

ABSTRACT

Software systems constructed

during the past twe decades, and’

in many instances in the very
recent past, have usually
followed the traditional roftware
engineering life c¢ycle approach
to software developnment:
requirements, spacification,
design, code, test, and
maintenance. Software developers
have usually been determined to
demonstrate all user
requirements, but the traditional
life cycle approach has often
hazpered this desire. Rapid
prototyping has been devised tn
facilitate the
software development. Since the
first symposium in 1982, a
variety of rapid prototyping
approaches have been developed.
One of these approaches involves
high-level languages designed
especially for prctotyping. It
has also bhecome increasingly
clear that discrete simulation
can be used tec gcod advantage to
augment the activities in the
traditional life cycle
development process. As software
system realizations transition
‘over time, there is the need to
achieve prototype changes easily
ani naturally, maintaining a
consistent view of the systenm,
and working with a language whose

process of .

features may be employed in
different 1levels of abstraction
with consistency of syntax and
ceman“ics. This paper presents
an overview of the development of
an Ada-based interface that
demonstrates the feasibility of
languaje concepts and features .
that achieve a joint prototyping
and simulation framework.

Intraduection

Experience has revealed that
customers do rot always have a
clear understandingy of exactly
what they reaily want their
software to do. They know their
application, but they cannot
always describe the details of
their problers to outsiders.
Even if czre 1is taken, the
communicetion between a scftware
enjyineer and the customer can
lead to misunderstandings?.
Misunderstandings can result in
omitted c¢r overlooked
requirements, which will
propagate throughout the software
developmnent cycle. To correct
this situation, the systen
requirements will have to be
modified, the software
specification will have to be
changed tu reflect the new
requirements, the design
probably will have to be
modified, the code may have to
change o reflect any design

169 11th Annual Hationzl Conference on Aada Technology 1993

f
g

waE By NN

--abstracting away

=y Bl KJd o

changes, and any changed code
will have to be retested. These
setbactks can create schedule
delays. Therefore, good
communication, particularly early
in the software life cycle, is
vitally important to the
development of a functionally
appropriate software systemn.

Sometimes newly discovered
requirements conflict with
previously existing requirements,
thus rendering the implemented
system useless. Discrepancies
between what customers want and
what developers provide may cost
as much as 100 times more than if
errors or cmissions had not been
made in defining the requirements
during the analysis step®. To
facilitate data flow and
communication during the early
steps of the traditionzl software
life cycle, additional
development techniques have been

proposed. Two such techniques
are discrete simulation and
prototyping.

Both discrete simulation and
prototyping can be used to mirror
components of - a '"real system"
relative to tinme passage,
synchronization, communication,
and the use of shared system
resources, while at the same time
unnecessary
Getail. However, they differ in
their representations of a
software system. Liscrete
simulation produces more abstract
representations of a system than
prototyniay, especially with
respact to time passadge.
Discrete simvlation models time
passage usin¢ a simulation clock.
Prototyping implements time
passage using a real time clock.
There is an area of uncertainty
at the boundary between
prototyping and discrete

simulation, but the nain
intention of each is discernable
within the software engineering
life cycle!®. 1In order tc provide
a more complete undeirstanding of
each technique, brief
descriptions of both are provide
below. :

Discrete Simulation

As digital computers became
commercially available in the
1950s and 1960s, it was
recognized that they poscsessed a
valuable capability of evaluating
simulation models as discrete
approximations of physical
systems being studied. Because
time in the physical system could
be represented as a series of
discrete changes, these
simulation models took on the
name "discrete event models",
and the simulation techniques
used to computerize these
discrete models became kinown as
"discrete event simulation".
Over the last three decades,
discrete event simulation
techniques have become an
integral part of some so-called
"high level™ programming
languages. From the simulation
standpoint, these languages fall
into two basic categories:
jeneral-purpose prcgramming
lanagvages and special-~ purpose
simulation languages. The
special-purpose simulation
languages have developed around
four .discrete time control
strategies: event scheduling,
activity scanning, the
three-phrase approach, and
process interaction. The time
control strategies are founded
upon the fundamental concepts cf
conditional and unconditional
events. Unconditional events aras
executed by sequencing events
according to an agenda that is

11th Annual National Conference on Ada Technology 1993

17

171

. Janguage.

solely time ‘dependent.
Conditional events are executed
by sequencing events to an agenda
that is not solely dependent on
time, but is also depsndent on
other imposed conditions (such
as, is the CPU busy?)?,

Each discrete time control
stratecy determines how a modeler
must view a system that is to be
modeled by providing alternative
world views. The texrm "“world
view" is used to describe the
perspective of a system that is
assumed when using a given
Each world view has
demonstrated itself as a valuable

simulation approach, and in many

cases has led to the develcpment
of new languages. However, the
world view that has shown promise

recently is the process
interaction approach.
The process interaction

approach has characteristics of
both event scheduling and
activity scanning. . Any
simulation language designed
around the process interaction
approach allows the wuser ¢to
concentrate on a single entity
(such as a customer) and the
sequence of logical steps
involving the entity?. This
sequence of steps, or activities,
is commonly known as a process.
Each step of a process consists
of a condition segment and an
action segment, which are
characteristics of the activity
scanning approach. The
successful execution of the
condition segment dictates
whether the action segment is
executed.

The process interaction time
control procedure implements two
event lists: a future event list
and a current event list. The

future event list, as the name .
implies, contains event notices
for activities scheduled to be
executad at some future tinme.
The current event 1list, as its
name implies, <contains event
notices for activities to be
executed at the current
simalation clock time, if their
conditions are met. . Upon
simulation time update, all
activities scheduled for current
time are removed from the future
event list and placed on. the
current event list. The current
event list is scanned to
determine if the condition
segment of each entry can be

satisfied. Those entries whose
cendition segments can be
satisfied, proceed by executing

the accompanying acticn segment.
An activity progresses through as
many steps as time and condition
segments dictate. When an entity
cannot continue to advance
through the sequence of
activities, the scan of the
current event 1list can proceed
and the simulation clock is
advanced.

Although the process
interaction strategy was accepted
as one of the best frameworks for
building simulation models, it
was not the simplest to code.
Nevertheless, this approach was
implemented early in the history
of programming languages via GPSS
in 1961.

The current trends reflect a
quantum increase in tools and
methods for simulation, and all
indications are that the momentum
is still increasing. Due to the
close conceptual conformity of a
process interaction model to its
corresponding system, there is
every reason to expect continuing
emphasis . on the = process

11th Annual National Conference on Ada Technology 1993

N
w

i
s

interaction world view’.

Rapid Protctyving

It was in the decade of the
1980's that prototyping, in
particular rapid prototyping,
received recognitior. The first
symposium on the subject was held
in 1982%,
conference on prototyping was
held in Germany which focused on
the user-oriented development of
information systems. It was in
the development of information
systems that rapid prototyping
was used effectively. Since the
occurrence of these conferences,
a variety of rapid prototyping
approaches have developed. One
technique is very-high-level
languages.

Very-high-level languages
are a continuation of the
programming language evolutionary
process. First, there |was
machine 1language which evolved
into assembly langunage. Assenmbly
language evolved into programming
languages, which provided more
simplicity and flexibility in the
programming environment.
Programming languages offered
users the ability to potentially
code several assembly language
statements under the guise of a
single proyramming language
statement. This provided a more
readable and 1logically shorter
programs. Very-high-level
languages take this concept one
step further. Semantically
related programming statements
are gathered together, perhaps in
the form of a procedure or
function, and are represented by
a single very-high-level
programming Janguage statement,
thus, further reducing the
logical size of a program and
elevating it to a 1level that

In 1983, a working .

could be —considered command
driven. Very~high~-level-
languages incorporate software

reusability to provide users with
a statement set that is
simplistic, yet powerful.

The traditional life cycle
approach did not accommodate the
evolutionary develcpnment
introduced by rapid prototyping
cavabilities?. However, they have

‘beern used within alternative life

cycle approaches, such as the
Spiral Approach. Very-high-
level languages, have assumed an
impertant position within the
framework of software engineering
by offering features that are

uniform relative to syntax,
semantics, and '"system view".
The intent of very-high-level

language systems is to provide
effective means of transitioning
from lower to higher fidelity
system representations, as the
system realization "hardens"
throughout its development!®. Two
successful examples of very-high-
level languaqe prototyping are
JADE? and BPL!:.

Boehm, Gray, and Seewaldt’
made a study of projects that

proved to be well suited to the .

-use of software prototypes.
Their research revealed that
systems constructed using

prototypes performed equivalently
to. those systems constructed by
the more traditional life cycle
techniques. Even more important,
their research revealed that
approximately 40% fewer lines of
code werz written by those who
used prototypes to construct
their systerns. As a tresult,
rapid prototyping has proved its
usefulness as a softwarz
development tool and is an area
of increasing importance and
research.

11th Annual National Conference on Ada Technology 1993

1

The Benefits of a Combination

Rapid Prototyping/Discrete -

Simulation lLanguage System

As can be determined from

the discussion above, both
discrete simulation and rapid
prototyning have made a

significant impact on software

engineering and each has been
successfully estaklished as a
useful life cycle tool. Discrete
simulation has had a tremendous
influence on the development of
numerous computer programming
languages. Rapid prototyping has
had an influence by providing an
alternative. development
technique. With these two widely
used and - repeatedly proven
development tools available, can
an advantage: be gained by
combining the two into a joint
software development apprcach?
If so, what are the advantages
and disadvantages of the joint
developmer.it approach? The answer
to these questions is found by

examining the advantages and
disadvantages of each tool
individually. Any specific

advaritage gained by a merger will
ke derived from tine individual

components of the ~union.
Therefore, our attention is
directed to the specific

advantages and disadvantages of
discrete simulation and-of-rapid
prctotyping.

' Advantages and Disadvantages of

Discrete Simulation

The concept of discrete
simulation has been utilized for
many years and the primary
advantages and disadvantages are
well defined. Schmidt and
Taylcr? and Banks and Carson! as
well as others have outlined and
dncumented then.,

s,

-from a variety

As a develoupmenc tocl,
discrete simulation can be used
early in the life of a software
systen. To assist with the
analysis of such a software
system, a discrete simulation
rodel can be developed.
can receatedly evaluate the
discrete simulation modei with
various data sets in order to
analyze potential designs. If
input data is plentiful,

~ different proposed system designs

can. be evaluated in order to
determine the nost appropriate
One .)

Even when input 'data is
somewhat sketchy, discrete
simulation concepts can still be
used to aid in the analysis of a
proposed systenm. Actual system
data is always preferred, since
it prcvides realism to a
simulation; however, real systenm
data is quite often too expensive
or perhaps impossible to obtain.

-In this case practicality is the

rule of thumb. Over the years it
has been shown that sinulation
data is wusually less costly to
obtain than real system data.
Simulation data can be generated
of existing and

well proven random number
generators. If system analysis
can . identify a probabiiity

distribution, then any necessary
system data can be generated from
this distribution instead of
using _ .costly data gathering
techniques. '

Generall,, when developing a
software mdel a software
engineer cazn consider the model
from two fundamental simulation

approaches: analytical and
numerical. Analytical simulation
requires good insight and

undexrstanding of the mechanics of
mathematics and deductive

173 11th Annual National Conference on Ada Technology 1993

The user

W

L oa 3

reasoning. Bu% being well versed
in analytical methods may not be
good enough., Many systems are $o
large and complex that
mathematical models are
impractical to manipulate and
results are extremely difficult
to deduce. on the other hand,

numerical discrete simulation
concepts require computational
precedures which are executed on
computers rather than solved
manually. The executed
procedures produce a system

history consisting of data which
can be examined to find expected
‘results and to discover
unexpected anomalies. Computers
can also be used to efficiently
manipulate large = amounts of
system data used as inputs or

generated as outputs. This fact
alone usually encourages many
more users of numerical
simulation methods over the

analytical methods. In addition,
analytical models usually require
several simplifying assumptions

to make them. mathematically
manageable. Discrete numerical
models do not have this
restriction. In many problem

situations analytical models can
~ evaluate only a limited number of
system performance measures.
Software engineers implementing
discrete simulation models can

approximate any conceived
performance measure by using
generated simulation data.
Therefore, the ensuing cost of
acquiring real data for a
proposed system, or the

difficulty in defining a suitable
analytical model, often elevates
discrete simulation as the only

practical soluticn to the
problen.
Even though éimulation

during software development is
appealing in numerous situations,

there are alsc some side effects
from the use of simulation that
are not desirable. Simulation
models developed for digital
computers may be costly for
several reasons. Large, complex

simulation models can require a“

good deal of time to construct
and validate. The interactions
that may take place within the
model can be complicated and
difficult to define. 1In order to

perfect a nodel, numerous
computer runs are required.
However, this disadvantage is

made tolerable through the use of
the special purpose simulation
languages and constantly
increasing computing capability.

] With the improved special
urpose simulation languages and
computer facilities, users can

become very familiar with
computing techniques, and may
ignore their mathematical
training. This situation can

lead to bad choices for problem
solutions. Sometimes users may
over look an cobvious mathematical
solutlou and select a nunmerical
solution instead. This error can
prove to be costly in both time
and! money.

Advantages and Disadvantages of
Rapid Prototyping

Rapid prototyping has been
in use by software developers
only about half as 1long as
discrete simulation. Therefore,
the primary advantages and
disadvantages of rapid
prototyping are not as well
documented as those of discrete

simulation. However, Connell and
Shafer’, and others provide
insight into this area. We

summarize these advantages and
disadvantages in the following
paragraphs.

11th Annual National Conference on Ada Technology 1993

174

As a communication tool,
rapid prototyping has

demonstrated itself to be helpful

and sometimes cost effective in
many small and large projects.
Consider the situation involving
an incomplete requirements
document. It is very difficult
to achieve coordination between
the design specification and all
user requirements for a complex
system until the user |has
witnessed at the minimum a
partial implementation. When a
customer attempts to relate
requirements to a systen
engineer, uncertainty exists
about what is needed in the
software. 1Users are busy, they
forget important details, or they
really just aren't interested.
Scmetimes, not everymnne who
should be . involved in
requirements definition is
involved and very important
criteria is lost’. 1iIn this case
the software requirements may be
considered a "wish list", but not
necessarily a complete wish
list®, At other times, the
customer may have a Dbasic
understanding of what is needed
in the desired software, but is
uncertain if it is feasible to

develop it. With rapid
prototyping, sections of any
proposed system can be

" represented and used to determine

the feasibility or desirability
of the customer's perceived
requirements. The requirements
can be evaluated before the
design is finalized. Formal
specifications may never Dbe
documented as in the traditional
life cycle approach; however, if
specifications are desired, the
final prototype itself may bLe
perceived as the specifications
for the software?.

The experience and

understanding gained in
constructing a prototype
transfers into an overall bestter
system. In terwms of develcpment
cost and development time, it
appears to be more effective if
changes to system ambiquities
occur early in the software
development, rather than Jlater

-during the maintenance phase
. after the software has been
" released. Historically, the
" .functionality of a system is
-changed by users late in the
. development cycle - because

software engineers usually do not

" greatly involve users during the

pre-design phases. As a result,
a user's perspective sometimes

"turns out to be different than

the design specification in the

-reality of a visible, working

systen.

However, using rapid
prototyping, the opportunity to

‘make functional modifications as

a result of changes in the
requirements can come at a much
earlier time. Users have an
opportunity to view a working
model prior to test and
maintenance. Thereforve, an
advantage of rapid prototyping is
accommodating new or unexpected
customer requirements early in
the development cycle rather than
later during the test and/or
maintenance stages.

A direct consequence cof
involving the user early in the
software development process is
the cost savings that can occur
in the maintenance phase of
software development,.
Traditionally, using the software
development life cycle, most of
the cost of software is not
incurred during the development
effort or during the coding
effort, but rather during

175 11th Annual National Conference on Ada Technology 1993

software maintenance’. It is a
fact that software engineers make
development mistakes during the
early phases of the software life
cycle. Some of these errors
surface during the test phase,
and others will go undetected

until after the software is
operational. In the traditional
life cycle approach a dgreat

portion of the development effort
is directed to correcting
mistakes that propagate through
the early phases of software
development into software test
and maintenance’. By using rapid
prototyping, cost reductions in
the test and maintenance phases
occur because software
engineering errors have a greater
.opportunity to be caught by the
users before the test phase
begins. Therefore, fewer
modifications will be required
after software delivery.

An additional advantage
gained from rapid prototyping is
the ability to discard the
prototype of an infeasible or
unworkable system at a relatively
small loss compared to the
devastating loss from discarding
a system late during the test or
maintenance phase of the
classical scftware life cycle. A
software system that survives the
inspection of the user through a
rapid prototype can only increase
the user's satisfaction with the
final product, thus providing a
measure of quality control and
productivity improvements in the
development phases beyond the
analysis prototype design.

One disadvantage with using
rapid prctotyping is not found in
the technical approach
implemented by the users, but
rather in the way users peiceive
it. Since rapid prototyping is a

problen,

relatively new technique for
software development, not all
software engineers feel
comfortable with it. Although a
software system may be developed
by using rapid - prototyping
techniques, maintenance engineers
or even scftware designers may be
more accustomed to the
traditional life cycle approach.
A change in approach may be
perceived as criticism of their
professional ability and they may

become uncomfortable with the
situation or possibly even
hostile. There 1is always an

inclination to reject techniques
that are not familiar, and thus
delay their advancemrent.

In the same vein there is a

shortage of trained prototypers

and maintainers of prototype
systems. Compounding the
there has been 1little
opportunity for training
prototypers or introducing
developers to this newer way of
thinking. Companies that develop
prototyping tools usually offer
training, but a qgeneral approach
to rapid prototyping and rapid
prototyping methodologies has
been lacking.

A Merger of Rapid Prototyping_and

Discrete Simulation

With rapid prototyping and
discrete simulation working
together in a ccmbined language
system, benefits emerge in all
aspects of the software 1life
cycle. To better understand how
these benefits relate to the
traditional software cycle,
consider the software life cycle
to consist or the following six
phases:

(1) requirements analysis
(2) system design

11th Annual National Conference on Ada Technolegy 1993

175

(3) high-~level software design
(4) implementation

(5) integration/testing

(6) operation/maintenance

In phase one, during the
early stages of the software
development, it is very prudent
to determine the feasibility and
practicality of individual
requirements. To assist in this
operation, a simulation can be
developed that can examine
software throughput data and
deterrine if the volume of data
defined in a requirement |is

reascnable. - It a sufficient
amount of real data is not
available to the simulation,

random humber generators can be
used to supply any amount of data

necessary to test these
requirements. It is also
valuable to inspect some

potential man/machine interface
requirements at this point. A
rapid prototype can be used to
accomplisn this task. Using a
very low fidelity representation
of the software's functionality,
plausible man/machine interraces
can be constructed and examined
for their usefulness to potential
users?s,

During phase ¢two, system
design, assessment capability is
essential to proper software
developnent. Assessment of
resource utilization and queue
buildup is vital to the success
of phase two. Efficient use of
systen resources and data
structures is critical to the
development of a usable baseline.
Simulation techniques can be used
to perform these assessments.

In phase three, high-level'

software design, proper
assessment can reveal
input/output problems, as well as

identify high activity modules
that require special attention
from the developer.
case simulation activities can
again be used to expose software
flaws in order to avoid potential
botctlenecks during software
operaticn. Phase three also
provides an excellent opportunity
for usage of prototyping
techniques, to resolve issues
concerning distributed processing
capabilities.

After the software systen

transforms from software design

into an implementaction,
prototyping and simulation can
still be ' valuable tocls.
Software engineers can build
prototype modules to serve as
drivers and stubs during
integration a»1 testing (phase
five). 1In pha=ze six, simulation
and prototyping can be used to
evaluate the impact of changes to

working softwarz prior to any

actual change.

To some engineers the
concepts of rapid prototyping and

discrete simulation are very
similar and may <cause some
confusion. There is a '"gray

area” at the boundary between
rapid prototyping and discrete
simulation, but the main purpose
of each development approach is
distinguishable. Simulation
ciearly has its most effective

role in the more abstract
representations of a software
system during requirements

analysis, design assessments, and

maintenance. Prototyping has its.

rcle in the more visible aspects
cf the software that occur during
system design, software design,
and integration and testing. As
the software transitions through
the software life cycle, and the
representations of system

177 11th Annual National Conference on Ada Techrology 199.

In either

characteristics become more
concrete, it may Dbe nore
appropriate to use "real® time
instead of simulation time. This
change. implies a natural flow

from simulation to prototyping
croussing each phase, yet
maintaining a consistent view of
the software system under
development. By using a joint
simulation/prototyping 1language
system, this time flow capability
can be achieved!’:8,

ICLS

To demonstrate the validit
of a combined 1language system

supporting discrete simulation
within a rapid prototyping
environment, a study has been
conducted with emphasis on

developing an interface to
discrete simulation languages and
rapid prototyping languages. The
interface was named NICLS
(Natural Interface for a Combined

Language System) and is
pronounced "Nichlas". The
purpose of the study is fourfold:
(1) to select a discrete
simulation language, which
possesses a set of language

statements that will serve as a
representative of the discrete
simulation langquages,

(2) to select a rapiad
prototyping language, which
possesses a set of language

statements that will serve as a
representative of the rapid
prototyping languages,

(3) to utilize the programming
language features of the discrete
simulation representative and the
rapid prototyping representative
by means of an interface from a
general purpose programming
language,

(4) to select a general purpose
programming language to serve as
a base language as well as a
medium in which the intevrface can
be developed.

The results of the study yielded
the selection of BAda as the
general purpose pregramming
language, the Behavior

'~ Prototyping Language (BPL)1? as

the representative of rapid
prototyping languages, and
Simulation and Modelling on Ada
(SAMOA) %' as the representative of
discrete simulation languages.
The basis for each of these
selections is outlined below.

Ada ___as __a___ General __Purpose
Programming Language

Although relatively new as a

general purpose programming
language, Ada has obtained a
respected following within the
software engincering community.
It was developed under the
leadership of the United States

Department of Defense to be used

initially within large, real time
embedded computer systenms. Ada
proved to be adaptable across a
diversified set of applications
in both the commercial and the

government communities. Ada's
success was due to its
suitability across the software
life cycle. It possesses
features designed to facilitate
both classical software
engineering and rapiad
prototyping®. Some of these

features are the more modern
software engineering princigles:
data abstraction, information
hiding, modularity, concurrency,
portability, strong typing, / and
versatile syntax. These

principles allow Ada to bridge:

the gap between past programming
languages and current software

11th Annual National Conference on Ada Technology 1993

178

availability of information.

- James W. Hooper.

University of

development methodologies.

~ BPL

BPL was selected as the
representative of the . rapid
prototyping languages based on
the following criteria: language
features, proven application, and
BPL
offered an excellent example of a
very-high-level rapid prototyping
language, and it provided stable
guidance in the development of
the rapid prototyping features.

BPL was designed to provide
language features uniform
relative to syntax, semantics and
system view. It was purposely
designed to .} achieve rapid
prototyping of system bshavior by
use of abstraction, which can be
performed to different levels
with good effect. The syntax and
semantics of | BPL language
statements were influesnced by
several existing languages, the
most influential being SETLY,
Simscript?®, and}Pascal. BPL is
not a "strong data typing"
language due to {the intluence of
set-theoretical | concepts from
SETL. Rather BPL is a strong
object-typing language.

BPL was designed by Dr.
It was based on
verformed at the
Alabama in
Huntsville. It was developed for
the United States Army Ballistic
Missile Defense (BMD) Advanced
Technology Center for use on
their Distributed Data Processing
Testbed. Dr. Hooper is serving
as advisor to the NICLS research
effort and is available to
provide first-hand information
concerning the implementation of
BPL.

research

K

R

SAMOA

SAMOA was selected as the
representative for the discrete
simnlation lanquages basza on twe
criteria: base language and
simulation wcrld view.

SAMOA, as the name implies,

- has Ada as the base language and

was an attempt by its developers
to arply Ada constructs toward
the development of a fully
integrated, discrete event
simulation language. The desiqn
of SAMOA was guided by two goals:

(1) limiting the number of Ada
programming statements a userv
must kncw to a Pascal equivalent
subset. This could potentially
ease the transition of non-Ada

vrogrammers to an Ada-based
language, and
(2) allowing users. when

necessary, to have access to the
full power of Ada. This provides
the knowledgeable Ada programmer
a full arsenal of Ada language
capabilities to apply to the
problem at hand.

By possessing a Pascal 1like
subset, SAMOA provides a rich
supply of known programming
features to integrate with the
BPL programming features.

SAMOA approaches discrete
simulation <from the process
interaction world \view, and

demonstrates a continued trend of
increased usage of this worid

view in discrete simulation
languages within tbe United
States.

The Guiding Principles in the
Development of NICLS

The guiding principles used

79 11th Annual Nationél Conference on Ada Technology 1953

- support

during the development of NICLS
follow the principles outlined in
Hooper!®. Those principles are:
understandable languece concepts,
understandable language syatax,
computatinnal /‘representational
pover and flexibility, and
for the software
development piocess. Although
the principles discussed by
Hooper were simulation oriented,
their applicability to NICLS is

" just as valid.

The Overall Approach to NICLS

NICLS provides a syntactic/

semantic approach to software
development. All NICLS
statexents are syntactically

“iden*ical whether they appear in

a simulatien or in a rapid
prototype. Aowever, their
interpretation depends on the
semantics of the module that
contains them. A preprocessor is
used to translate the NICLS

.statements into standard Ada.

A program may contain a
combination of NICLS and Ada
statements., The preprocessor
scans for the NICLS statements
while ignoring the accompanying
Ada statements. It recognizes

~the NICLS statements because they

have an augmented Ada-like syntax
that is distinguishable from
standard Ada by the preprocesor.
Cnce the preprocessor has
completed the translation
process, the Ada compiler
provides the run- time support.

The Combined lLanguage Fesatures of
NICLS

Within any software
development effort there exist
aspects that can be considered
the principal aspects of tne
syster. In many instances these

aspects can be defined using
abstract representations.
However, unless there exists some
cet of implementable mechanisins
corresponding to the abstract
representations, these
abstractions will be useless. In
order for NICLS tn Le a viable
software development tool, it
must <demonstrat: a useful set of
implementable mecharisms. Thus
there rermained the task of
identifying for NICLS these
implementable mechenizms.

Scme of the mechanisms can
be easily identified. For
example, consider "Time Passage"
as the candidate for abscract
representation. Time passage
from a software developer's
perspactive can be envisioned as
two distinct clecking mechanisns,
simulation time and real tinme.
If simulation time is selected as
the desired clock strategy, then
the corresponding mechanism can
be a transformation module that
operates in a simulation
framework (i.e., a simulation
clock and a future event list).
If real time is chcsen as the
desircd clock cstrategy, then the

corresponding mechanism is a
transformation module that
operates in a prototyping
framework (i.e., real time
delavs). '

By using the time based

transformation modules described
above, an added bonus is
revealed. If the transformation
rodules are implemented so that
the programming statements
composing them are identical
syntactically, and the 9only
difference between the simulation
transformation mocdule and the
prototyping transformation module
is the interpretation applied to
the programming statements, then

11th Annual Nztional Confercnce on Ada Technology 1993

18C

a key programming element that is
necessary for a clean transition
from low fidelity to high
fidelity is manifested. This key
programming
consistency.

because the
modules 1look the same from a
vrogramming perspective, but the

Consistency occurs

interpretation is dependent upon

the semantics implied by the
implementation. This establishes
a working framework that can
evolve semantically from a
simulation framework to. a
prototyping framework.

To properly use this key
programming element to its full

potential requires that the
programming framework contain
transitional statements that

.appear syntactically identical,
yet are translated according to
the semantics implied by the
framework containing them. An
example of such a transitional
statement is the DELAY N
statement. In a simulation
framework DFLAY N causes some
event within the simulation to be
placed on the future event list.
When the
aupdated by N time units, the
event is removed from the future
event 1list and reactivated.
Alternatively, DEIAY N in a real
time framework causes some event
to become idle until N real clock
units have elapsed, then the
event 1is reactivated. Notice
that the statement, DELAY N, has
the same syntax for both
implementations, but the
interpretation is dependent upon
the semantics of the enclosing
framework. ‘

In order for programming
statements like DELAY N to have
meaning as trarsitional
statements within NICLS, they

element is

transformation

simulation clock is.

must be viable

programming
statements in both simulation
languages and prototyping
languages. ~ This concept |is
currently directing the
investigation 1leading to the
definition - of a set of
transitional statements. A
comparison for syntactic

uniformity is being made using
programming statements from both
SAMOA and BPL. It is our goal to
complete this study and have a

- working version of NICLS by the

end of this year.
REFERENCES

1. Banks, Jerry and Carson, John
S. 1984. Discrete-Event System
Simulation, Prentice-Hall, Inc.
Englewood Cliffs, N. J.

2. Belz, Frank C. 1986.
"applyint The Spiral Model:
Observations On Developing System
Software - ' In Ada", in the
Proceedings of the 4th Annual

National Conference - on Ada
Technology. (Atlanta, Ga. Mar
19-20, 1986) . u. S. Army

Communications-Electronics
Command, N.J., 57-6§.

3. Boehm, Barry W. 1983.
Software Engineering Economics,
Prentice~Hall, Englewocad Cliffs,
N.J. _ :

4. Boehm, Barry W., Terence E.
Gray, Thomas Seewaldt, '1984.
"Prototyping Versus Specifying:
A Multiproject Experiment", IEEE

Transactions on Software
Engineering SE-10, no. 3(May):
290-302.

5. Buhr, R., J., A&A., 1984.
Syster Design In Ada, Prentice
Hall, 1Inc., Englewood Cliffs,
N.J.

| 11th Annual National Conference on Ada Technology 1993

Balfs
o

a o=

6. Carrio, Migual A. 1986. ‘%The
Technology Life Cycle ind Ada",
in the Proceedings of the 4th
Annual National Conference of Ada
Technologv. Atlanta, Ga. Mar
19-20, 1986). U. S. Army
Communications-Electronics
Command, N.J., 75-32.

7. Connell, J. L. and Shafer, L.
B. 1989. Structuired Rapid
Prototyping, An Evolutionary
Approach ta Software Developnent,
Prentice Hall, Englewood Cliffs,
N.J. . :

8. Duncan, Arthur G. 1982,
“pPrototyping in Ada: A Case
Study", ACM Sigsoft Software

Engineeriny Notes 7, no. 5(Dec):
54-60,

9, Gray, dJchn H., James W.
Hooper, 1987. "“The Evolution Of
Process Oriented Simwlation

Languages®, in the Proceedings of
the 1937 Swutheastern Cnmputer
Simulation Conference.
(Huntsville, Alabama, Oct 19-21,
1987). 8SCSC, San Diego, Ca.

10. Hocpber, J.W. 1979. Simulation

Strategies: A Theoretical and
Practical Investigation, A
Dissertation, University of

Alabama, Birmingham.

11. Hocper, J.W. 1985a. "BPL: A
Set-Based Language for
Distributed System Prototyping.",
Internaticral Journal of Computer
and Information Scierices 14, no.
2(Apr): 83-105. ’

12, Hooper, J.W., J. 7. Ellis, T.
A. Johnson, 1985b. "Distributead
Software Prototyping with ADS",
in the Proceedings of the 8th
International conference on
Software Engineering. (Londor:,
U. K., Aug 28-30), 1IEE, Llos
Angeles, Ca. 216-223.

13. Hooper J. W. i98G6. "Languane

Assescment Criteria For Discrete
Simulation", in the Proceedings
of the 1986 Winter Simxulation

‘Conferenc:, 404-403.

14. Hcooper, J. W. ~1987a.
"Software Engineering Ap»nroaches
For Discrete Simulation", in the
Proceedings of the 18th Aunnual
Conference on - Modelling and
Simulation, (Pittsburg, Pa., Apr
1987).

i5. Hooper, J. W. 1¢87b.

"Uniform Language Concepts for

and Simulation of
Software." in the Proceedings cf
the 1887 Summer Computer
Simulation Conference (Montreal,
Quebec, Canada, July). 8CS, San
Diego, Ca., 93-98.

Prototyping

16. Hooper, J.w, 1987¢.
"lLanguages Features For Discrete
Simulation”, Computer Languages

12, ne. 1: 39-46.
17. Hooper, J. M, 1983a.
"Programming I.anguages." System

Modeling, N.A. Xheir, ed. Marcel

Dekker, Inc., New York, N.Y.,
2%1-317.

18. Hooper, J. W. 1988b.
"Language Features For
Prototyping and Simulation
Support Of The Software Life

Cycle", Computer Languages.

19. Kennedy, K., and J. Schwartz
1975. "An Introduction to the Set
Theoretical Language SETL", Comp.
and Math. with Applications 1(1):
97-112,

20. Kiviat, P. J., R. Villanueva,

and H. M. Markowitz 1973,
SIMSCRIFT IT1.5 Programminy
-Language, 2nd Ed., Consoclidated
Analysis Centers, Inc., Los

Angeles, Ca.

11th Annual National Conference on Ada Technology 1993

."5.-‘. - . . /'“ ‘ \ /.

B WS M S
s RO '\‘ ~ .I: . [
PP S . o

182

183

21. Lomow, G., B. Unger. 1982.
"The Process View of Simulation
in Ada."™ in the Proceedings of

the 1982 Winter Simulation

Conference (San Diego, Ca., Dec
6-8). IEEE, N, J., 77~86.

22, McCracken, Daniel D., Mickael
A. Jackson 1982. “Life Cycle
Concept Considered Harmful",
Software Engineering Notes 7, no.
2(Apr): 29-32.

23, Pfleeger, Shari Lawrence,
1987. Software Engineering.
Macmillan Publishing Company, New
York, N.Y.

24. Schmidt, J. W., and R. E.
Taylor 1970. Simulation and
Analysis of 1Industrial Systems,
Irwin, Homewood, Ill.

25. Squires, S.L., M. Branstad
and M. Zelkowitz (guest editors).
1982. "Special Issue on Rapid
Prototyping", ACM Software
Engincering Notes, 7, no. 5(Dec),

- 1-185.

26. Unger, B., G. Birtwistle, J.
Cleary, D. Hill, G. Lomow, R.
Neal, M. Peterson, I. Witten, B.
wyvill, 1984. "JADE: A
Simulation and Software
Prototyping Environment", in
Simulation in Strongly Typed
Languages: Ada, Pascal, Simula
ey Society for Computer
Simulation, San Diego, Ca.,
77-83.

Brief Bibliography

JOHN H. GRAY is employed by TF
Inc. as a senior softwa
engineer working on the Spe
Station Freedom project. He
currently pursuing a Ph.D.

Computer Science at t
University of © Alabama
Huntsviile.

Dr. JAMES W. HOOPER is current
serving as Weisberg Professor
Software Engineering at Marshe
University, Huntington, W.V.,
leave from his “position
Professor of Computer Science
the University of Alabama
Huntsville. Earlier he conduc!
simulation research as
employee of NASA Marshall Spi
Flight Center.

11th Annual National Conference on Ada Technology 1993

e N
STRAda: A software tool for distributed Ada

D.Bekele, C.Bcrnqn. M Filaii, J.M Rigaud, A.Sayah

IRIT
Université Paul Sabatier
118, Route de Narbonne

31062 1“0ULOUSE Cedex
email: bekcle@iriLfr -

Abstract

Ada was dcsigned for programming in the small as well as for programming in the large. As far as programming
in the large is concemed, its main features are:

- packages for modularity,
- tasks for concurrency,
- and exceptions for reliability.

Currently, these features are well supported for centralized environments, however they raise some probleras in
distributed environments, Several ways of addressing the issue have been considerca: for instance, in Ada 9X ncw
programming language constructs, e.g. virtual nodes, are propos=d; we investigate an alternative approach which
consists of a software tool for transforming standard Ada programs into distributed Ada programs.

11th Annual National Conference on Ada Technology 1993

184

185

llnlmslnm.o.n

The importance of distributed systems has
urdergone constant growth ovei the past decade. This
trend is due to a number of factors including:

- the decreasing cost of processors,
- the continuously increasing power of

- these p'océssors

- the high capacities and speeds achieved
by computer networl.s.

On the other hand, the complexity and the cost
of applications running on these powerful systems
have taken on considerable proporu'onsg. The main
reason lies in the fact that it is often difficult to use
software design concepts and tools which are mostly
intended for non-distributed programming. High level
languages very rarely includc abstractions which make
distribution easy to handle. As a result, information
characterizing the hardware configuration of the
network is directly embedded in the application code.
Structures of this kind are a serious obstacle to tne
portability and maintainability of the application.

It is also true that programmers may not feel
that the task of distributing their applications actually
concerns them. The use of several processors is a
simple way of accelerating the execution speed of their
programs. in this case, the description of Jistribution
functions by the programmer becomes a painstaking
task. The problem is now one uf implementation and
optimization of the application.

Ada is currently one of the few languages
possessing a fully integrated parallelism model.
However, version Ada83. incorporates no specific
distribution features. More particularly, the language
does not define the unit of distribution (task, package,
-etc.) and contains no abstraction suited to the problem
(processor assignement for tasks, inter-process
communication and synchronization, etc).

The STRAda system (Systéme de
Transformation et de Répartition Ada or Ada
transformation and distributior. syster.1) completes Ada
and provides a simple way of solving the distribution
issue. It is based on the following principles:

- The task, which is the unit of
parallelism in Ada, is chosen as the distribution unit of
the application;

- Processor assignement for tasks at the
various network nodes is performed either statically

STRAda: A software 100! for distributed Ada

(programmed mode) or dynamically (interactive or
automatic mode);

. - Inter-node communication is eniirely
handled by the system and remains transparent to the
programmer.

The STRAda system consists in translating one
Ada program into another Ada program. In the
transformed program, tasks are replaced by distribution
units and inter-task communications become inter-node .
communication. The system provides of a user
inierface used to place, monitor and control tasks in
operational mode.

In part one of this article the authers classify
projects dealing with the Ada distribution issue. Parts
two ang three specify and substantiate the choices
adopted in the STRAda project. Implementation is
dealt with in part four, The last secuon provides an
evaluation of completed work.

Zﬂuanannmamﬁs_nLMmg
the issue |

Although the Ada language has not excluded the
distributed aspect of applications , it docs not include
the basic concepts necessary to a simple ‘expressnon of
this distribution, as is the case for parallehsm and
other advanced software cngmeermg: concepts. A
number of investigations have been brought to bear on
this aspect of programming which address the issue
from various different angles. A classxﬁcauon system
developed by Bishop and Haslmg 8 sims up these
methods: r '

~1- How many Ada programs are
involved?

Either a single Ada program is
partitioned for distribution over the network or several
Ada programs are run locaily at each node and
communicate with each other across an mdepcrdem
message system.

2 - How is communication among nodes
expressed?

Communication can be explicitly
expressed by the programmer of the application, or it
can be implicit and transparent to the programmer
when generated by the translator or tool dedicated o
this service.

3 - What is the degree of liberty left to
the programmer as far as the unit of distribution is
concerned?

11th Annual National Conference on Ada Technology 1993

% L

A number of language constructs
could be considered to comply with the profile of a
distribution unit, the most important being packages
and tasks, although subroutines and even variables
could also be distributed.

4 - How is the distribution map
specified?

Distribution of units to the various
nodes can be explicitly described, using a dedicated
langrage for instance, or automatically by a dynamic

-+ Jr raphical analysis of the network used.

The authors define several ways of addressing
the problem according to the choices made with respect
to these criteria. The disadvantage of the most
fundamental approach (several Ada programs)29 may
be that checking among programs running on several
nodes could fail. However, this pitfall could be avoided
by using dedicated communication packages.

| The next two classes involve single Ada
programs and imply constraints on distribution units.
Communication can either be explicit 14+ 1 or implicit
27,2, 10,

‘ The !a<- <class explored involves Ada
applications ir ./hich no constraints are made on
distribution u..1is. The most advanced project in this
area is the APFL project 13+ 13,

3. STRAda and Software Engincering

i
|
} The STRAda sys.em consists in transforming a
classic Ada program into another equivalent program.
The essential aim of the transformation operation is to
take into account the existence of several processing
nodes in order to globally increase the performance of
the application. The extensions fully comply with ihe
initial semantics of the language and are based on the
most fundamental software engineering principles.

3.1. Portability

Portability is the ease with which a sofiware
product can be adapted to different hardware and
software environments 22. Portability is improved by
applying software ergineering principles such as
abstraction and data dissimulation.

The basic principle of abstraction consists in
extracting the vital property of one level while
omitting details that are not crucial 24, A high level
abstraction specifies which actions must be performed

STRAda: A software tool for distributed Ada

while a lower fevcl abstraction spcifics how cach
action is to be completed

The underlying principle of data dissimulation
consists in rendering inaccessible certain details which
must not affect other parts of the system. In STRAda,
for instance, the protocol used on the network is
hidden: authorizing it would constitute a breach of
distribution abstraction logic.

Ada is one of the rare widely used languages to
incorporate a parallelism model. The Ada task is an

- abstract model of parallelism and is independent of the

host system. The rendezvous concept lets tasks
synchronize and communicate. This property is
essential in designing portable parallel applicauons.

On the other hand however, Ada does not
provide an abstraction which can be used to express
distribution. In the case of distributed applications, the
programmer must therefore use the distribution model
provided by the host system. In UNIX systems for
instance, the distribution model is defined by the

process as a distribution unit and sockets the means of -

commurication between processes.

Consequently, the portability of such
applications is badly compromised by the. fact that
implementation details which are too close 1o the
hardware used are taken into account.

The STRAda system uscd the Ada parallelism
model as the basis of the distribution model. Indecd,
parallelism and distribution have many points in
common. Using the same unit for both parallelism and
distribution is therefore natural, the same being true for
communication and synchronization mechanisms. This
association enables the STRAda sysiem to render
distribution totally transparent to the programmer. It
can be said that parallelism in Ada is a programming
concept which is available to the programmer and that
distribution with STRAda is a programming concept
which is hidden from the programmer.

3.2. Reliability

Reliability is the ability of software to opcrate
even under adverse conditions 22.

One of the most fundamental requirements of
cmbeded systems, for which Ada was specifically
designed, is reliability. This means that no errors are
allowed to remain in the system. Residual errors are
nevertheless inevitable such as erroneous input data,
for example. When exceptions of this sort occur, such
as a divide by zero, most languages stop processing

11th Annual National Confereuce on Ada Technology 1997

184

187

and the operating system takes over: this should not be
true of a reliable real-time system.

Ada exceptions allow detecting abnormal
situations and processing them with specific action.
Detection of abnormal situations is ensured by the
hardware, system software or the user application. Any
exceptions detected must compulsorily be processed.

In distributed Ada applications, the exception
concept cannot be applied to the whole application. In
effect, cither the application consists of several
independent applications, in which case exceptions
vary from node to node, or the application is a singls
program, in which case inter-node communication
generally does not cater for exception transmission.
This type of situation occurs when exceptions take

place during a rendezvous between two tasks located on

different nodes.
3.3. Reusability

Reusability is the ability of software to be
totally or partially reused for new applications 9, Many
software components are similar: it would be
interesting to exploit these similarities to avoid
performing redundant work. In distributed applications,
there is often a need for a program waich already exists
for a different hardware configuration (different number
of processors, different processor types, etc.)

Reusability directly affects all other cost and
quality factors. When all or part of an existing software
program is reused, development costs are diminished in
all the phases of the software life cycle. Software
components already tested on other target systems are
used, which increases the reliability of the application.

Ada provides a high degree of reusability thanks
to features such as genericity: i.e. the ability to
parametrize a library unit. Parametrization increases the
reuse potential of these units.

Since no distribution units exist in Ada, data
relating to the hardware configuration the application is
actually going to run on are disseminated throughout
the program. Reuse of the program for another
configuration (also called reconfiguration) is not a
simple task since all levels of the distributed
application must be reworked.

With STRAda on the other hand, all
information concerning the hardware configuration are
supplied during another phase which is totally
separated from the application logic programming
stage. Reconfiguration only involves modifying this

STRAda: A software tool for distributed Ada

phase dedicated to conf iguration: the Ada program
pertaining 1o application logic is not modified.

3.4. Other characteristics

Efficiency means making good use of available
hardware resources 22, It has often been thought that
the efficiency of an application diminishes when the
level of the languaage used to program it increases. The
contrary has been proved with applications written in
Ada and rewritten in assembly language. Indecd, the
executable originating from Ada is sometimes
extremely efficient. This can be explained by the fact
that the compiler uses several optimizing techniques
that assembly programmers do not use.

In the same way, optimizing techniques can be
implemented (processor assignement to balance out
loads, use of the right protocol, etc) in the STRAda
system which can make applications using this system
more efficient.

" Ease of use refers to the ease with which the
users of a software program leamn to operate it 22 nis
obvious that the higher the abstraction level, the
greater the ease of use. As STRAda possesses a higher
level of abstraction for distribution than distributed
programs written in Ada83, it is easier to use.

4. STRAda and the solutions adopted

In the previous sections we have discussed the
importance of a high level abstraction model for
distribution. In the STY Ada projeci, we have reused
the Ada task model for distribution. This choice is in
line with the target architecture: a network of
workstations, A finer de~ree of distribution, such as
that adopted by APPL1S seems 10 us to be better
suited to a massively parallel architecture (example : a
transputer network).

The choice of using Acda tasks as the
distribution units and the desirc to maintain Ada
concepts such as exceptions for the aistributed program
lead us to adopt the single program model for the
distributed application.

The basic principle of the project consists in
developing a minimal distribution kernel used 1o
implement all the more specific concepts of the Ada
language. For the minimal kernel, we have opted for
communication via message exchange. A certain
number of aspects of the language are not accounted for
by the distribution kernel such as shared variables and
task termination. In section 5 we shail discuss

11th Annual National Conference on Ada Technology 1993

implementation of these points in terms of services
vrovided by the minimal kernel.

Implementation consists in translating an Ada
source program intc another Ada program (figure 1). In
the transformed program, all constructs relating to
parallelism and communication are replaced by calls to
services provided by the STRAda kernel.

To conclude, some of the most interesting
facets of STRAda include a minimal kernel adapted to

- the Ada language and reuse of existing systems

without any modification (Ada compilers, UNIX -

operating system etc.).

" Transtormed
. Ada
Application -

5. Defining a_distributed kerpel
adapted to Ada

In this section, we shall lock at the
relationships we have identified between the concepts
and mechanisms of the Ada programming language and
the UNIX operating system. We shall do this by
examining parallelism, synchronization and
distribution issues.

5.1. Parallelism

We have quite naturally associated a UNIX
process with each Ada task. However, from a purely
practical point of view, this may scem costly: we

11th Annual National Conference on Ada Technology 1993

STRAda: A software tool for distributed Ada

could have considered using the technique found .
most compilers of multiplexing several tasks with a1 a
single UNIX process (pseudo-paralielism).
Nevertheless, the implementztion strategy adopted has
the following advantages: :

- real parallelism within an Ada program
is made possible on multi-processor UNIX stations:

- the underlying operating system
(UNIX) can be reused more efficiently, as the
synchronization of an Ada task is expressed directly in
terms of the synchronization of the support process.

In the STRAda system, paralielism and
distribution are implemented by remote task creation.
The site where the task is resident is currently specified
explicitly when the task is created.

5.2. Sypchronization and communication

In order to install the aistributed version of
Ada's synchronization and communication instructions,
we have chosen sockets to support synchronization and
communication. Each Ada entry is associated with a
socket and a port. The UNIX primitives (sendto,
recvfrom, select) make it possible to send or receive on
one of these entries or 1o select an entry from a set of
entries.

Currently, each Ada task handles its own rendez-
vous; we could have designed a more efficient strategy
with each site having a single rendez-vous server.

The solution adopted has certain limitations,
but it also has the considerable advantage of enabling
direct reuse of the UNIX communication sysiem.

5.3. Exceptions

We have seen that developing a distributed
application with STRAda frees programmers from the
reed to plan for distzibution. This rule still applies
where an exception is raised at a site and has to be
handled on another site.

In a non-distributed appiication, the Ada run
time system handles the propagation of the exception
and locates the corresponding exception handler. In a
distributed application with STRAda, the STRAda
kzrnel handles the propagation of the exception
between two remote sites where necessary. As the
distribution unit is the task, such propagaiion is
required in the following cases:

- when an exception is raised during a
rendez-vous;

188

- when attempting to rendez-vous with
ap aborted task; -

when an exception is ralsed as a task
is being created. .

It is useful to be able to handle exceptional
circumstances that can arise in distributed systems
(such as communication or processor failures) by using
exceptions. The STRAda kernel must therefore be
capable of raising such exceptions and propagating
them to the destination tasks.

, An exception that has to be propagated from
- one disributed task to another must be intercepted and
sent to the remote program- in coded form. When the
program receives it, it is then decoded and the original
exception is explicitly raised in the destination task.
The Ada kemel then takes over on site.

5.4. Architecture and ir plementation
of the STRAda kernel :
The STRAda kemnel consists of:

- a package providing tasks with
services for parallelism, communication and
synchronization; ‘

- a set of tasks, called Server-Creation,

each executing at each application site (see figure
between: STRAda Architecture).

Application

STRAda: A software tool for distributed Ada

Transformed

Ada | STRADA TASXS

STRAda [| Packages Creation-Serve_r-J
kernel

Host UNIX
System

Synchronisation and Crca%on requests

Messages . .
sent to comniurication received from
messages received others nodes
other nodes
: from other nodes

An application task synchronizes itself or
coramunicates by using Ada's dedicated instructions
(i.e. task declaration or dynamic task creation, entry
call or acceptance of a rendez-vous on an entry, select,
etc.). These subroutines use sockets 10 communicate
directly with a remote task, or with a Server-Creation .
task. Each Server-Creation task initializes tasks to be
executed at the site. It does this by creating a UNIX
process and assigning it a unique name. In this way, to
create a task on a site S, the parent task communicates
via the STRAda package with the site's Server-

Creation task, which then returns the data that the
parent task needs to synchronize or communicate
directly with the 1ask created (eatry points represented
by UNIX sockets). The table below shows the contents
of the package in summary form.

Function performed I :

Create task

Call task entry v "

Accept rendez-vous without exchange of data (caller niot blocked) "

Accept rendez-vous with exchange of data (caller blocked until end of
rendez-vous)

Accept one of several .. lez-vous, immediate or deferred "

189 11th Annual National Conference on Ada Technology 1993

6. Transforming the Ada model into a
‘ UNIX mode¢i

In this section, we shall iake a brief look ai
how the transformations proposed are implementcd.
We start off with an overview of the tool we used, ne
Comell Synthesizer Generator 26 (for more details and
examples, refer 1o 25). We then go on to discuss the
transformation principles and choices adopied.

6.1. The Corpell Synthesizer Generator

The Corneil Synthesizer Generator (CSG) is a
tool that uses an assigned abstract syntax to generate a
syntax editor. The programming language used by the
CSG is the Synthesizer Specification Language (SSL).
In SSL, abstract trees are specified using the concept of
a phylum. A phylum is a type of tree with nodes that
are constructed recursively using specific operators and
phyla. For the STRAda project, we chose the abstract
syntax DIANA 12 (Descriptive Intermediate Attributed
Notation for Ada). The main reason for this is that
DIANA is considered to be the standard notation for
Ada programs, so STRAd2 will be able o integrate
with other tools like Anna 18. Another important
feature of the CSG is that the abstract trees may
contain synthesized or inherited attributes 11, These
attributes are normally used to express the language's
semantic checks. We have used them in the STRAda
project to synthesize other programs.

6.2. Transformation principles

Here, we shall look at the transformation
principles used in an Ada program. We should recall
that the aim of transformations is to replace all Ada
instructions concerning parallelism and
synchronization with equivalent instructions calling
the STRAda kemel we have already degcribed. We
concentrated mainly on:

- a global functional transformation in
which the abstract tree of a program is completely
transformed by an SSL function;

- a local attribute transformation in
which each node of the abstract tree of an Ada program
synthesizes a transformed node, the| global
transformation therefore consisting of the attribute of
the root of the program's abstract tree.

The main point to stress is that whatever type
of transformation is used, a new Ada program is
obtained.

STRAda: A software tool for distributed Ada

6.2.1. Functional transformation

As we have already seen in the previous scction,
the CSG's SSL language is capable of defining and
handling abstract trees of an abstract syntax. Here, we
want to transform abstract trees in DIANA notation,
This transformation can be defined as a recursive
function on the abstract tree of a program: for cach
type of node N, we define a transfermation function
that defines N and, if necessary, recursively invokes the
functions associated with the types of the child nodes
of N.

Although theoretically possible, for the
moment thi¢ strategy can only be implemrented using
the CSG. What normally happens is that a
transformation function references attribute~ associated
with a node in the abstract tree, which may be the
environment inherited from this node, for example.
However, referencing an inherited or synthesized
altribute in an SSL function is not possibie using the
current version of the CSG.

6.2.2. Transfonwation by calcylation of
auributes

In attribute transfcrmation, we only define the
local equations required to relate each node to an
attribute representing its transformation. Provided that
circularity is avoided, an autribute definition can
reference other attributes.

This is the strategy that we have adopted. An
interesting feature is that the abstract tree of the initial
Ada program is not modified, as the Ada program of
the applicaticn to be transformed is the attribute
associated with the root of the original Ada tree.

6 2.3. Transformation examples

The examples below are designed to show how
an Ada program is transformed into an equivalent Ada
program by going through the STRAda kernel. The
first example is a simple one based on the accept
instruction only, and the second example shows how
the select instruction is transformed.

Example L

‘type MSG is array (l1..r) of

character:

accept RETRIEVE (INFO : MSG) do
INFO := BUFFER;

end RETRIEVE;

11th Arnual National Conference on Ada Technology 1993

190

191

This Ada code is translated imb the equivalent

declare
Info : msg;
begiu

Accept_do (Task_Box.entry_ RetrlEve,

Caller_name):
Info := BUFFER;

ACCEPT_END
(TASK_Box.entry Retrieve,

Tp_out => (Tab_param'first =>
(Info'address, Info'size), '
Caller_name);

end;

Example 2

The UNIX setect primitive, which waits for a -

message on a set of ports, enables the Ada select
instruction to be easily translated into the equivalent
Ada code:

select
whan S>0 =>
accept P:
§ := 8§ -~ 1;
or
" accept V;
§ := S + 1;
end seleact;
This Ada code is translated into the equivalent
Ada code:
declare
L_ENT : LISTE_OF_ENTRIES (1..MAX);
NB : integer := 0;
ENT_SEL : ENTRY_NAME;
begin
i£ s>0 then
NB := NB + 1;
L_ENT(NB) := ENTRY_P;
end 1i€;
NB := NB -1;

STRAda: A software toc! for distributed Ada

L_ENT(NB) := ENTRY P;

ENT_SEL := SELECTT(L_ENT (1..NB),
~1);

case ENT_SEL is

when ENTRY P => ACCEPTT(ENT_SEL) ;

S :=8 - 1;
when ENTRY_V => ACCEPTT(ENT SEL);
S:=§ + 1;
when . others =>' .raise

Tasking_error;
end case;
end;

7. Prosessor_assignement_for_tasks

In this section, we shall expand on the aspects
of processor assignement. The STRAda approach
makes it easy to define a generic processor assignement
procedure. This generic procedure can be instantiated in
the following contexts:

1 - Task control station

This station is able to locate tasks interactively.
It provides operators with important information that
will enable them to determine their choices (processor
loads, assignemen: of the same processor for tasks
likely to communicate with the task to be ¢.eated, etc.)
through an ergonomic man-machine interface.

However, this mechanism is only useful for
tasks with long lifetimes (e.g. servers).

2 - Configuration program

The configuration program is written in a

separate phase of the main program. It is written in
Ada and consists of an assignement function called by
the 1ask creation function. This method has the
advantage of being valid for programs whatever their
lifetime.

3 - Automatic processor assignement manager

The manager frees the programmer from having
to worry about processor assignement if he/she so
desires. Several managers can be used, each designed
for a specific sitnation: balancing of processor loads,
grouping of tasks communicating frequently on the
same site, etc..

11th Annual National Conference on Ada Technology 1993

8. Discussion

8.1. Assessment

In this part, we shall discuss the approach
adoptcd for the STRAda project. As we have already
seen, the STRAda approach is above all
transformational: we have not attiempted to define a
ncw language or system, but simply studicd how to
transform certain constructs of an existing language
into constructs of an cxisting system. We feel this
approach is a good one for scveral reasons:

. - familiar, of the shelf and widely used
compilers and systems can be used, thy's ensuring good
portability;

- it is casily adaptable 1o other systems:
we could also consider transforming coustructs for
Chorus 28 or for other real-time kerncls.

As for installation, we have lcft aside the
problein of sharcd variables, task termination and time
management (delay instruction) for the time being. We
would stress that with regard to shared variables:

- [firstly, certain off-thc-shelf systems
now provide global memory abstraction over a
network; '

- sccondly, thanks to the minimum
STRAda kernel, we can consider a schema in which
shared variables arc impiemented as distributed
variables encapsulated in remotely accessible tasks and
transformations making it possible 1o substitute access
10 these shared variables by calls to entry points
defined by the tasks.

The problem of task termination, howcever, is
trickier, as an algcrithm adapted to the Ada modecl is
required. This point is being studied.

We also made some implementation choices
that sometimes imposc limitations on the system.
First of all, we chose a UNIX process to implement
tasks, even though a thread more closely reflects the
nature of a task. The reason for this choice is onc of
history: threads were not yet supported by UNIX when
the Ada project was started. They are still not
supported by a lot of systems, and for this reason they
would have reduced STRAda's portability.

We also chose sockets instead of RPCs

{Remote Procedure Calls). This is related to the choice -

of Ada reundez-vous as the mechanism for
communication between remote tasks: the socket

STRAda: A software tool for distributed Ada

model more closely reflects rendez-vous than the RPC
primitive.

Other limitations were imposed on the use of
the task mo¢ . The COUNT attribute associated with
the qucue is e :mplemented as it is impossible to tell
the size of the queue on the socket. Flexible arrays are
not accepted as a rendez-vous paramecter. The same
applics 10 access types, with the exception of sk
acceess types, since the task names are replaced during
transformation by a singlc namc over the entire
distributed cnvironment. Finally, exceptions that arc
rot pre-defined are not fully propagatcd. When a non
pre-aeiined exception has o be propagated from one
site to another, the exception USER _ERROR 1s ranced
at the remote site. :

8.2. Ada9X and STRAda

Like all other projects studying distribution
with Ada, STRAda attempts to pravide distributed
applications with what was missing froim Ada83. The
definition of a new Ada standard is near completion,
We alrcady know that most of the shortcomings of the
current version, with respect to distributed systems,
will be fixed by Ada9X. Here, we shall attempt to
assess how Ada9X will respond to the needs of
distributed applications and to what cxtent STRAda
will continuc to be of usc cace Ada9X has been
relcascd.

Unlike Ada83, Ada9X dcfincs a distribution
modecl. The language has a distribution unit, called a
partition, and a model for communicating between
paititions. On compilation, packages are put into the
following classcs:

- pure packages;
- remote call interface packages;
- shared passive packages;
- normai packages.
It is only at the link editing stage that the

partitions are made up by groups of library units.
Partitions may be:

- active partitions, which arc pseudo-
independent programs able to make or receive remote
calls; '

- shared passive partitions, used 10
manage data in shared memory arcas.

The application programmer has to provide the
partition communication sub-system interface for
transferring messages between partitions. The
compilation system uses this interface o create

11th Annual National Conference on Ada Technology 1993

parameter passing stubs auiomatically. This'm,eans

that a standard distribution mode! can be used without
being dependert on a special type of distribution
environment. This model solves the problems
encountered when attempting to design distributed
applications with Ada83, for two reasons:

- portability is improved by the use of 2
standard distribution modc!; only the body of the
standard communication sub-system interface
RPC_SUPPORT needs to be supplied when changmg
o another distributed environment; :

- static and dynamic reconfiguration is.

simpler in AdaSX ithai in Ada83, as in Ada9X the
software is not assigned to specific hardware uritil after
code has been compiled.

Static reconfiguration with Ada9X is achie\ied
simply by changing the partitioning specifications or
by allocating proces<ors so that the distributed program
can be run on a different configuration. For dynamic
reconfiguration, we ficed to be able to create dynamic
links between partitions. This is done either by using
subroutine access types or tagged class access types.

Exceptions are used in inter-partition
communication. An exceptio: raised on calling a
- remote subroutine is propagated to the calles program.

Similarly, a COMMUNICATION_FRROR exception

is razsed in any exceptional circumstances caused by a
network failure or a remote hardware failure,

The Ada9X distribution model is completely -

independent of the parallelism model. This makes
implementati:on easier, as the model chosen is well

suited to distributed sysiecms. On the other hand, in’

applications where distribution is requircd only to
imprcve response times or fo. more efficient use of
hardware, it would be useful to be able to free the
programmer from distribution issues. This is where
STRAda may continue to be helpful once Ada9X has

~ arrived. STRAda makes i: possible to distribute any

parallel unit, meaning that a distribution system can
remain totally transparent,

9. Conclusion

A prototype of the STRAda project is currently
operational. We have tested several standard parallel
programs, like an adaptation of the dining
philoscphers' problem in a physically distributed
environment.

STRAda: A software tool for distwibuted Ada

A practical aspect that we feel is of interest
concen:s transformations for existing rcal-time kernels
or uperating systems; this would make it possible to
write or reus: applications written in a high-level
language, and to reuse existing and dedicated real-timz
kernels for certain types of architecture,

We think that STRAda provides some solutions
to the preblems of distribution with Ada; this will still
be the case when Ada9X has been released, since the
approach used for STRAda is a complement to that
used for Ada9X.

Finally, from a theoretical point of view, it
wou!d be interesting to validate the corresponng
transformations. .

Ir. conclusion, the STRAda project has allowed
us to research and establish links between different
areas of information techrology, by working on both
system and language aspects. This experience proved 0
be very rewarding.

Bibli hy

[1] C. Atkinson and A. Di Maio
From CIADEM to DRAGOON
Distrituted Ada: developments and experiences,
pages 105-136,
Cambridge University Press 1990

[2] A.ArdSandL. Lundberg
The MUMS Muliprocessor Ada Project
" Distributed Ada: developments and experiences,
pages 235-258,
Cambridge University Press 1990

(31 C. Atkinson, A. Di Mzio and A. Natali
Ada for distributed systems
Campridge University Press 1988

(4] M.J.Bach
The Design of the UNIX Operating System
Prertice-Hall International Editions 1986

{51 G. Bazalgette, D. Bekele, M. Filali, C. Bernon,
J.M. Rigaud & A. Sayzh
STRAda: Un systéme de transformations et de
répartition pour le langage Ada.
Fourth Internationa! Conference, Software
Engineering & its applications, 1991, Toulouse,
France, proceedings p. 309 :

11th Annual National Conference on Ada Technology 1993

{o]

|
I
l
]

(7]

ﬂ 8]

(9]

(19]

i1i1]

(12]

(13]

(14]

G. Bazalgetic, D. Bekele, C. -non, M.,

Filali, JM. Rigau$ ¢ A, Sayah .

STRAda: An - Transformation and
Distribution Sy:

Ada: Moving To . us 2000, 11th Ada-Europe
International Conference

Zandvoort, The Netherlands, June 1992,
Proceedings

Springer-Verlag Heidelberg 1992

M. Boari, S. Crespi-Reghizzi, A. Dapra F.
Madema A. Natali '
Multi-microprocessors Programming
Techniques: MML, a new set of to0ls

IEEE comprier, Jan 1984

J.M. Bishop and M.J. Hasling

Distibuted Ada - the Issuzs

Distributed Ada: developments and experiences,
pages 1-14,

~ Camb idge University Press 1990

G. Booch
Software Engineering in Ada
Benjamin/Cummings Publishing Company,

7 Inc., Menlo Park, Californie

R. Dewar, S. Flynn, E. Schonberg and N.
Shu!man ,
Distributed Ada on Shared Memory
Multiprocessors

Distributed Ada: developments and experiences,
pages 222-234,

Cambridge University Press 1990

P. Deransart, M. Jourdan, B, Lorho

Altribute Grammars: Definitions and
Bibliography.

Springer Verlag, aug 1968

A. Evans, K.J. Butler, G. Goos, and Wulf
WA,

DIANA reference manual. Technical report TL
834.

Tartan laboratories incorporated, feb 1983

G. Eisenhauer and R. Jha

Honeywell Distributed Ada - implementation
Distributed Ada: developments and experiences,
pages 153-176,

Cambridge University Press 1990

A.D. Hutcheon and A.J. Wellings
The York distributed Ada Project

(15]

[16]

(17}

(18]

(19!}

(20]

[21]

(22]

(23]

[24]

STRAda: A software ool for distributed Ada

Distributed Ada: develcpments and experierces,
pages 67-104,
Cambridge University Press 1990

R. Jha and G. Eisenhauer

Honeywell Distribiited Ada - Approach
Distributed Ada: developments and experiences,
pages 137-157,

Cambridge University Press 1990

R. Jha, M. Kamrad II, anc¢ D.T. Cornhili

Ada program partitioning language: a notation
Sfor distributed Ada programs. v
IEEE Transitions on software enyingering,
15(3):271-280, mar 1989

M.B. Jones and R.F. Rashid

Mach and machmaker: kernel and language
support for object aricnzed distributed systems.
In N. Meyriwitz, editor, OOPSLA Pruc. or
object-oricnied programming systems,

~ languages and applications, pages 67-77. ACM,

sep 1986

B. Krieg-Briickner and D.C. Luckham.
Anna: towards a language for annotating Ada

programs. »
SIGPLAN, 30(3):228-228, nov 1980

F. Kordon, P. Sens

Répartir des programmes Ada sur un ensemble
homogéne de machines UNIX, une expérience
de réalisation

Ada, premier bilan d'wiilisation, pages 123-135,
Congres Ada France nov 1991.

J.C. Knight, J.ILA. Urquhart
On the implementation and use of Ada on Fault
tolerant Distributed Systems

Ada leuters 1984, 4(3), pp. 53-64

B.Liskov
On lingwistic support for dis:ributed programs
IEEE Transactions, 8(3)

Bertrand Meyer
Ccnception et programmation par objets
InterEditions, Paris, 1990 :

Manuel de Référence du langage de
programmation Ada
Alsys, fev 1987

D.T. Ross, J. B. Goodenough et C.A. Irvine
Software Engineering: Process, Principles and
Goals -

11th Annval National Conference on Ada Technology 1993 194

Computer, Mai 1975: 65

§28) T.W.Rcps and T.Teitcibaum

The Synthesizer Generaior, A System for -

Constructing Language-based Ediiors.
Springer Vertag, 1989

(26) T.W.Repsand T.Teitclbaum
The Synthesizer Generator Reference Manaal.
Springer Veslag, third edition, 1989

{27) A. Volz, P. Krishnan and R, Theriault
Disiributed Ada: a Case Study
Distributed Ada: developments and expenences
pages 15-57,
Cambridge University Press 1990

{28] H. Zimmermann,). S. Bamno.A Caristan, M.
Guillemont and G. Morisset
Bacsic concepts for the support of distributed
systems: The Chorus Approach
IEEE Catalog NO. 80-83218, page.r 60-67. Apr
81
Computer Society Press

(29) B. Dobbing, I. Caldwell
A Pragmatic Approach to Distributed Ada for
Transputers
Distributed Ada: developmcm and experiences,
pages 200-221,
Cambridge University Press 1990

Authers:

C. Bernon and D.Bckele are preparing their PHD at the
Paul Sabatier University in Toulouse, France. M.
" Filali is a research worker at the CNRS (Centre
National dc Recherche Scientifique). J.M. Rigaud and
A. Sayah are assistant professors at the Paul Sabatier
University. The domain of intcrest of the authors are
disrribuied sysiems, Ada and object oriented languages.

STRAdz: A software tool for distributed Ada

195 1ith Annual National Conference on Ada Technology 1993

Software Re-Engineering Panel

Moderator: Jim Hchan, Naval Alr Warfare Center

Panelists:

Jack Cooper, Anchor Scftware Management
Jay Crawford, Naval Air Warfare Center
John LeBaron, US Army CECOM

Richard Vener, Comptek Fedral Systems
Doug Waugli, SEI-SWAP

11th Annual National Ccuference on Ada Technology 1993

196

Program Reuse Experience

Moderator: Dr. Dennis Ahern, Westinghouse Electronics Systems
Group

Panelists Session 1: Larry Lang, F-22 SPO
Marcus Musgrave, Lockheed
James Williamson, Wright Laboratory
Ed Beaver & Phil Johnson, Westinghouse

Panelists Session 2: Robert Glordano, PEO Army Command & Control
Randy Korich, A'ITCS CASS
Sandra Zucker, GE Aerospace

- Harry Jolner, Telcs Systems Group

197 11th Annual National Conference on Ada Technology 1993

| SEI Measurement Program

Moderator: Dr. Robert Park, Software Engineering Institute

Panelists: Judy K. Fleming, IBM Federal Systems Company
Marshall Potter, Naval Information Systems Mgmt Center

11th Annual National Conference on Ada Technology 1993 198

Existing Re-engineering Tools & Capabilities
Moderator: Hans Mumm, MRaD

Panelists: Romel Rivera, Xinotech Research, Inc.
Evan Lock, Computer Command and Control Company
Alex Blakemore, Genoa Scftware Systems
Wid Spalding, Dynamics Research COrporatlon |
Buck Rizul, Mark V Systems

199 11th Annual National Conference on Ada Technology 1993

1

. \

Futures Panel

Moderator: Miguel Carrio, MTM Engineering, Inc.

Panelists: Dr. Samuel Metters, CEQ, Metters Industries
James Smith, President & CEO, SEMA Corporation
Helnz Kagerer, Vice President, SIEMENS-NIXDORF

11th Annual National Conference on Ada Technology 1993

200

201

MATHEMATICS, ENGINEERING, AND SOFTWARE DEVELOPMENT

Michael J. Lutz

Rochester Institute of Technology
Rochester, New York

Abstract: While modern engineering prac-
tice owes much to both science and mathe.
matics, it is not identical with either. It is
the thesis of this paper that failure to recog-
nize the differences between mathematics on
one hand, and engineering on the other, is the
root cause of the failure to transfer comput-
ing theory into industrial practice. Only by
understanding the nature of the engineering
method and its relationship to mathematics
can we hope to infuse rigor into software de-
velopment, and in turn transform a craft into
an engineering profession.

Introduction

A recurring theme in discussions of software practice is
the need to provide a more “scientific” foundation for
the field. In part this viewpoint is based un the patent
success of science in advancing modern engineering.
One obvious conclusion is that software development
requires a similar rigorous, mathematical foundation
before it can truly be called software engineering.l' 2
Supporters of this position are disconcerted by the fact
that theoretical results have little effect on the state
of the practice.

It is my thesis that at the failure of theory to influ-
ence practice is rooted in a lack of appreciation of the
fundamental differences between science (specitically,
mathematics) and engineering. Indeed, I believe that
at least rome of the resistance to formalism isi based
on sound engineering principies, however poorly artic-
ulated.

Many of those advocating increased rigor, myself in-
cluded, were trained as mathematicians or scientists,
not as engineers. Given this, it is important to investi-
gate the methods of engineering and their relationship
to science and mathematics. Without such an under-
standing, attempts to apply theory to the engineering
of softwzre are naive at best, and counterproductive at

worst. However, armed with such knowledge, it will be
easier to spot arcas where theory can have the greatest
positive effect.

I have chosen the field of formal method.; to exemplify
both the problems and promises of theory as applied to
practice. While this is the area with which I am most
familiar, I firmly believe that similar comments apply
to other applications of mathematics and science. For
instance, a recent book on software reliability directly

addresses the needs of practitioners.

The next section provides a brief introduction to the
world of formal methods, providing a broad sketch of
the method types, as well as the role each type may
play in software development. A discussion of the engi-
neering method follows, with particular attention paid
to the role of science. This leads naturally to a dis-
cussion of the use of formal methods in the context of
the engineering method. In particular, a strategy is
proposed for the effective transfer of formal methods
to standard practice.

An Qven}iew of Fermal Methods

Any discussion of formal methods requires a definition
of this term:

A formal method is a mathematical system
and associated rules of inference used to
model and reason about some charactenstlc
of a software system.

While many such systems are applicable to software
development, the presentation will concentrate on
those describing functional behavior. This is where the
majority of work to date has taken place, and where,
as a consequence, the mathematical models are most
mature.

Even with this restricted focur, however, further cat-
egorization is desirable. Perhaps the clearest distinc-

11th Annual National Conference on Ada Technology 1993

|

'

N

tion is between the model-based approaches such as z4
and VDM,? and algebraic (equational systems) such as
0BJ.5 Model based systems usc a collection of math-
ematical entities (sets, relations, sequences, etc.) as
building blocks to construct problem-specific mecdels.
Algebraic systems are based on equations relating val-
ues drawn from different soris. As a rule, algebraic

~ systemns are used primarily to define the semantics of

abstract data types (ADTs), whereas model based the-
ories are employed for system level descriptions. Of
course, there is large overlap in the problems to which
these two approaches apply.

Competing methods can also be classified by the soft-
ware development phases where they are most useful.
The Z system, for example, is most frequently used
for system specification, though approaches exist to
carry it through design and implementation. Similarly,
VDM also spans the specification and design pheses,
though its emphasis is clearly on the latter. Finally,
Dijkstra’s guarded command language7 is primarily
for proofs of (implementation) correctness, using a for-
mal design specification already at hand.

The relative importance of modeling vs. reasoning pro-
vides a third perspective. All formal methods combine
modeling and reasoning, yet there is a discernible shift
in emphasis from the former to the latter as activi-
ties proceed from analysis to implementation. Z and
VDM are often presented as tools for precise and con-
cise modeling of a system or its components. In ad-
dition, they are also used to verify design steps, by
showing the formal design model mirrors the formal
specification in all essential properties. At the im-
plementation stage, where a system like Dijkstra’s is
applicable, the system has been partitioned into man-
ageable sized components, each of with a precise spec-
ification. Here the modeling activity is implicit, while
the inference rules highlight the role of formal reason-
ing in simultaneously creating algorithms and proving
their correctness.

A final role that formal methods can play is in cata-
loging systems of reusable components. The analogy
here is to a standard IC component catalog; an ex-
ample would be using the two-tiered Larch ziystem8
to describe interfaces of C modules. By providing
complete, accurate, and concise deseriptions of library
components, formal methods help developers evaluate
the fitness of components for their application. Note
that this use of formal methods is primarily one of
modeling.

There is a common thread through all of the view-

points above. In all cases, mathematics (specifically
discrete mathematics) is used to characterize the be-
havior of a software product. The question remains
whether or not these systems are useful as engineering
tools. To answer this question, we must first ¢~termine
what constitutes engineering, and how mathematics
supports engineering endeavors.

The Engineering Method

If engiaeering disciplines are to serve as guides for soft-
ware development, then an investigation of the engi-
neering method is in order. That is, the focus must
be on the sorts of problems that require engineers,
and how engineers approach such problems. We are
less concerned with the goals of engineering than with
the processes by which engineers achieve these goals.
With respect to formal methods, the question is even
more specific: what is the role of mathematics and sci-
ence in the everyday activities of practicing engineers?

~ The answer should help determine if and when formal

methods can be useful in software development.

A problem with this investigation is that most engi-
neers are not introspective by nature. In additior
while the philosophy of science is a respectable aca-
demic discipline, similar work on the philosophical
foundations of engineering is rare indeed. Yet with-
out such a perspective, it is presumptuous for non-
engineers to speak of any practice as promoting soft-
ware engineering. Fortunately, there are professional
engineers who have written about their profession and
its workings.g' 10, 11

A primary source for my investigations is a short work
by Billy Vaughn Koen. 1 In this 75 page monograph,
Koen tries to define the engineering method in a man-
ner that is acceptable to professional engineers and
accessible to the public at large. In Koen’s view, the
engineering method is:

The strategy for causing the best change in
a poorly understood or uncertain situation
within the available resources.

To an engineer, best is not absolute, but relative to the
engineer’s ability to assess and balance both technical
and societal issues. Thus professional engineers fre-
quently disagree over proposed designs, but primarily
on the basis of which aspects are significant and which
can be dismissed as inconsequential.

Koen then asserts that the engineering method can
only be understood as the application of appropriate

11th Annual National Conference on Ada Technology 1993

202

203

engineering heuristics. He defines the “state-of-the-
art” (or sota) as the heuristics available to the engi-
neering profession at a specific point in time. Each
engineer has his or her own sota, which reflects the
heuristics he or she can bring to bear on a problem.
An engineer engages in best practice to the extent that
‘his or her individual sota intersects with that of the
professnon as a whole.

Koen draws a strong contrast between this pragmatic
approach and the processes of science. Two conflict-
ing scientific theories cannot both be correct: at least
one is wrong. The victorious theory in any scientific
debate is the one which explains a broader spectrum

of phenomena, or which provides a simpler model of

the same phenomena.

Engineering heuristics, however, are never right or
wrong. Instead, they are more or less applicable in a
specific context. Indeed, many engineering heuristics
are discarded scientific theories that prove sufficient for
the task at hand (e.g., Newtonian physics). What is
more, the engineering sota can accommodate conflict-
ing heuristics, with higher level heuristics to determine
when each is used. ‘

There are two key consequences of Koen's perspective.
First, engineering practice has no absolute measure
for evaluation, if for no other reason than the sota is
undergoing constant change. Second, the heuristics
used in a particular case depend on more than purely
technical factors: societal norms, resource constraints,
and evaluation of risks. Koen meniions the Golden
Gate Bridge, which is not really made of gold despite
that metal’s advantageous properties.

Thus, in Koen’s view, a coneept, technique, or ap-
proach is judged by its relevance to the task at hand.
And, of course, as judgement is involved there is al-
ways a chance things may go sour. What distinguishes
engineering is the evolution of heuristics that succeed
much more often than they fail.

Koen discusses a variety of heuristics are various levels
of detail. Some are quite specific to a branch of engi-
neering; those for software, for instance, include avoid-
ing gotos and writing procedures that will fit on one
screen.” However, there are also higher-level heuristics
shared by most engineering disciplines:

¢ Work at the margin of solvable problems (don’t
siretch too far beyond what is known to work).

o Make small changes to the state-of-the-art (don’t
make radical changes to the process or the prod-
uct).

o Allocate resources as long as the cost of not know-

ing exceeds the cost of finding out (expend re-

sources to evaluate and reduce rigk).

Many of these are directly applicable to software de-
velopment. Firms that meke radical, uncontrolled pro-
cess changes often regret their impetuousness. Simi-
larly, prototypes are promoted as a way of reducing
the risk that delivered products will not satisfy the
customer.

One of Koen’s heuristics diséusses the use of science
(and by extension mathematics) Koen draws a sharp
distinction between applied sciénce on one hand and

~ engineering on the other:

The thesis that engineering is applied science
fails because scientific knowledge has not al-
ways been available, is not always available
now, and because, even if available, it is not
always appropriate for use.

The engineer récognizes both science and its
use as heuristics, although very important
~ ones, to be applied only when appropriate.

Examples abound of scientific and mathematical the-
ories that took decades, even centuries, to be incor-
porated into engineering practice. Many applications

.of Fourier analysis, for example, had to await the de-

velopment of digital computers and the dissemination
of tke Cooley-Tukey FFT algorithm. Similar obser-
vations may be made about the use of finite element
analysis in mechanical design.

In summary: engineers do not ignore probler.s simply
because scientific theory is lacking, nor do they blindly
apply all scientific results as they appear. Science is
a powerful tool for engineering, but the tool’s use is
guided by heuristics that also consider time, cost, and
other resource constraints.

While this discussion has been based on Koen’s work,
his opinions are supported by other commentators ¢cn
the engineering scene.™ + 13 In all cases, the crit-
ical issue in engineering, and the focus of engineer-
ing creativity is on design, which can only be under-
stood in the context of engineering judgement. This
judgement is co-terminus with the discriminating use
of heuristics, which in turn provides a usefu! reference
point when considering the application of computing
theory in software engineering. The particular ques-
tion we must address is how to increase the value of
the heuristic “use formal methods.”

11th Annual National Conference on Ada Technology 1993

T 8 - I
i Speas N by

.
1

§

o
\y‘\

\

e

1
1
¥

i

N b

o

’ |
P2

RN EEm

~

Forma! Methods and Software Enginecring

It is safe to say that use of formal methods is not
common in industry. The previous section gives us
clues as to why this is so. First, formal methods are a
dramatic departure from current practice, and this is
counter to the “small change” heuristic. Second, while
formal methods are elegant science, most practitioners
do not believe they are cost-effective. A recent book
contains a scathing attack on formalism on just such
grounds.14

There are many reasons for such skepticism, not all
of which are easily dismissed. Part of the problem
is the emphasis (at least in the U.S.) on formal pro-
gram proofs. Not only do such proofs appear tedious
and time-consuining, they presuppose a formal speci-
fication without describing how such specifications are
themselves developed. What is more, such proofs oc-
cur at the implementation stage of the development

" life-cycle, which ccnsumes a relatively small propor-

tion of a project’s resources. Finally, proofs do little
to increase confidence that the specifications are cor-
rect, or that the design reflects all requirements. Yet
is is increasingly clear that specification and design er-
rors are both more expensive to repair and more per-
nicious in their effects than those introduced during
implementation.

With these criticisms in mind, and remembering the
key tenets of the engineering method, it is feasible to
consider how formal methods might be most effectively
used in software development. The following sections
sket¢ch a three-phase strategy to increase the accep-
tance and application of formal methods.

Emphasis on Modeling

As mentioned above, it is skepticism about proofs (i.e.,
formal reasoning) that dominates discussions of formal
methods. One way to address this issue head-on is to
concentrate on the modeling aspect. First, it is eas-
ier to develop and read formal specifications chan it is
to reason about their properties. Indeed, it has been
argued that using mathematics as a descriptive tool
is valuable in and of itself, as the result is increased
clarity and reduced ambiguity.ls' 16 Second, it is eas-
ier to gain acceptance for a new technology when it
addresses front-end problems.

The prerequisite mathematics are the same for both
formal specifications and proofs of correctness. How-
ever, the level of description is higher and the potential
for improved quality more obvious in the case of spec-

ifications. Once the use of formalism as a descriptive
tool is accepted, it becomes much easier to incremen-
tally address isuues of formal consistency an=lysis and
verified design. This may, in time, lead all the way
to formal proofs of some components. Note, however,
that in all ceses the decision of whether or not to for-
mally verify a particular component remains heuristic.

The most frequently cited case of industrial formal
methods is the CICS rcengineering work at IBM’s
Hursley Labs in the United Kingdom, performed in
conjunction with Oxford University.” In this case,
Z is used to model the CICS components being reengi-
neered. While refinements to Dijkstra’s language are
part of the process, it appe¢ars that the modeling com-
ponent is most importan‘. In particular, Z is now be-
ing used to provide precise interface specifications for
CICS application developers.

Consumable Mathematics

Another impediment to increased use of formal meth-

ods is the level of mathematical sophistication re-

quired. In most engineering disciplines, practitioners
become master users of high level mathematical and
scientific results. Engineers use handbooks and other
reference material to access the essence of a theory; de-
riving necessary information from scratch is unusual.
Even in cases where engineers must apply fundamental
principles, they do so at an abstract level (e.g., using
general differentiation and integration rules).

Most formal methods, however, require intimate and
detailed knowledge of fundamental mathematical the-
ories. This may be a natural (if regrettable) conse-
quence of the immaturity of these methods. Still, the
fact remains that engineers rarely resort to the limit
definition of differentiation. Similarly, we should not
expect software engineers to routinely employ the low-
level inference rules of natural deduction.

An example of providing such higher level abstractions
is the work on instrumentation models at Tektronix.18
The creation of such models requires a deep knowledge
of Z semantics. Development engineers, however, ¢an
simply employ these models, having been assured that
they rest on firm foundations.

Engineers are not and should not be mathematicians.
Instead, the formal methods community must develop
higher-level “consumable mathematics” corresponding
to continuous mathematics for traditional engineering.
It is heartening to see that work is progressing on this
front.19. 20

11th Annual National Conference on Ada Technology 1993

204

e e

/';\\ '

Education of Future Professionals

The role of education in succexsful technology crans-
fer is vital. There are many instances where technol-
ogy introduced in the classroom supported significant
change in industry within a few years. The success of
_the Unix system, at least in the engineering worksta-
tion marker, is in large meaiure due to the wide-scale
use of the system by academia in the 1970’s. It does
not ma'ter whether one thinks this was good or bad;

what is significant is that academic experiences led to

expectations that were eventually met by industry.

Given this, it is crucial that students be exposed to
formality in such a way *hat they consider it an im-
portant ccnponent of their intellectual toolkits. If thie
is not <5, there is a risk that the next generation of
developzrs will be as skeptical as their predecessors
about formal methods. Thus, the prescription above
is as valid for software engineeriug curricula as it is
for industrial acceptance. That is, instructors should
stress modeling early, postponing formal proofs untii
such time as their significance can be demonstrated.
The result: more graduates who appreciate whs* for-
mal methods have to cfier and whe can articulate these
advantages during their professional careers.

I have adopted such a descriptive approach in two
courses I teach at RIT. The first course, an intro-
duction to design and implementation for sophomores;
uses simple pre and post conditions to defiae the con-
tract between clients and implementors of modules. 7=
addition, implementors are required to develop invari-
ants that characterize the legal internal states of their
modules. While our teaching language is Moduia-2,
the spirit is that of CLU-based work at MIT.2! I con-
sider this technique successful, as many students have

carried these practices over to later conrses taught by

others.

The second course is on spe sification and design, taken
by juniors and seniors in the software engineering con- -

centration. In this course, I introduce medeling in Z,
using the text by Potter, et. al.22, Later, when object-
oriented technology is presented, I incorporate Z as a
functional specification tcol, using the work of Hayes
and Coleman on coherent object-oriented analysis.23
The notion of design refinement and functional verifi-
cation is touched upon, but always in the context of
modeling a problem solution. The resnlts are gratify-
ing: surveys at the beginning and end of the course
show a definite shift towards the acceptance of for-
mality as useful in practice. Though the students are
skeptical about their ability to transfer this technol-

ogy to industry, the seeds of this transfer have been
planted.

onclusion

A formal, scientific foundatior. is required if software
development is ever tc Le rlassified as engineering.
However, developers of this foundation must be aware
of the processes underlying ergineering endeavors if
the resulting theory is to become part of standard

practice. Based on an investigation of the engineer-

ing method, this paper has proposed one strategy
for achieving such integration with respect to formal
methods. Similar stfategies must be defined for other
areas of computer science so that a modern software
engineering discipline can emerge.

Acknowledgements

My views on engineering and its relationship to soft-
ware development have been honed and sharpened by
my work with dedicated engineers in industry, and by
thoughtful and provocative discussions with associates
in RIT's College of Enginecring. My friend and col-
league Henry Etlinger has provided the positive crit-
icism that helped me clarify my positions. Finally,
Suzanne Bell of RIT’s Wallace M2morial Library has
been of invaluable assistance in belping me track down
relevant materials in the areas of science, engineering,
and technology transfer. : :

References

. 1. Mary Shaw. Prospects for an engineering dis-
cipline of software. IEEE Sofiware, 7(6):15-24,
November 1990. ' :

2. Anthony Hall. Is software engineering? = In
C. Sledge, editor, SEI Conference on Software

Springer-Verlag, October 1992,

3. John D. Musa, Anthony Iannino, and Kazuhira
Okumoto. Software Reliability : Measurement,
Prediction, Application (Professional Edition).
McGraw-Hill, New York, 1990.

4. J. M. Spivey. The Z Nolation: A Refercnce
Manual (2nd Edition). Prentice-Hall, Englewood
Cliffs, N.J., 1992.

5. Cliff B. Jones. Systematic Software Development
Using VDM. Prentice Hall, Englewood Cliffs,
N.J., 1990.

205 11th Annual National Conference on Ada Technology 1993

RS v -

"~ Engineering Education, number 640 in LNCS.™

10.
11.

12.

13.

14.

15.

16.

17.

. Joseph Goguen.

Parameterized programming,.
IEEE Transactions on Software Engineering,
10(5):528-543, September 1984.

. Edsger Dijkstra. A Discipline of Programming.

Prentice-Hall, Englewood Cliffs, NJ, 1976.

. John Guttag and James Horning. An introduction

to LCL, a Larch/C interface language. Tzchnical
Report 74, Digital Systems Research Center, July
1991.

. Samuel C. Florman. The Ezistential Pleasures of

Engineering. St. Martin’s Press, New York, 1976.

Henry Petroski. To Engineer Is Human: The
Role of Failure in Successful Design. St. Martin’s
Press, New York, 1985.

Billy Vaughn Koen. Definition of the Engineering
Method. American Society for Engineering Edu-
cation, Washington, D.C., 1985.

Mary-Frances Blade.. Creativity in engineering.
In Myron A. Coler, editor, Essays on Creativity
in the Sciences. New York University Press, New
York, 1963. ‘

Thomas Allen. Distinguishing engineers from sci-
entists. In Ralph Katz, editor, Managing Pro-
fessionals in Innovative Organizations. Ballinger
Publishing, Cambridge, MA, 1988.

Nathaniel S. Borenstein. Programming as if Peo-
ple Mattered: Friendly Programs, Software En-
gineering and Other Noble Delusions. Princeton
University Press, Princeton, New Jersey, 1991.

Datrrel C. Ince. An Infroduction to Discrete Mcih-
ematics and Formal System Specification. Oxford
University Press, 1988.

Anthony Hall. Seven myths of forr;lal methods.
IEEE Software, 7(5):11-20, September 1990.

Paul Johnson. Experience of formai development
in CICS. In John A. McDermid, editor, The The-
ory and Practice of Refinement, pages 59-78. But-

. terworths, London, 1989.

18.

19.

Norman Delisle and David Garlan. A formal
specification of an oscilloscope. IEEE Software,
7(5):29-36, September 1990.

John Guttag, James Horring, and Andres Modet,
Report on the Larch shared language. Techni-
cal Report 58, Digital Systems Research Center,
April 1990,

20. Darrell Ince and Derek Andrews. Practical For-
mal Methods with VDM. McGraw-Hill, 1991.

21. Barbara Liskov and John Guutag. Abstraction
and Specification in Program Design. MIT Press,
Cambridge, 1986.

22. Ben Potter, Jane Sinclair, and David Till.
An Introduction to Formal Specification and Z.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

23. Fiona Hayes and Derek Coleman. Coherent

. models for object-oriented analysis. In Andreas

- Paepcke, editor, OOPSLA ’91. ACM Press, Oc-
tober 1991.

Biography

Michae! J. Lutz is a Professor of Computer Sci-
ence at the Rochester Institute of Technology in
Rochester, N/, where he has been a faculty mem-
ber since 1976. In addition, he has irdustrial experi-
ence as a software designer, project leader, group man-
ager, and consultant in areas as diverse as portfolio as-
set management, real-time operating systems, optical
metrology, data communications, microfilm imaging,
and environmental auditing. His research interests in-
clude object-oriented technology, formal methods, and
computer science education. Professor Lutz received a
B.S. in Mathematics from St. John Fisher College and
an M.S. in Computer Science from SUNY Buffalo. He
is a member of the ACM and the IEEE Computer
Society. He can be contacted via electronic mail at
»jlécs.rit.edu.

11th Annual National Confererce on Ada Technology 1993

206

MODELING THE COSTS OF MILITARY SOFTWARE

Capers Jones, Chairman
Software Productivity Research, Inc.
1 New England Executive Park
Burlington, MA 01803
617 273-0140

Summary

Software produced for the U.S. military
services is one of the key components of
national defense, and will play an increasing
role in all future military operations. It is
therefore of critical importance to
understand the key factors which influence
the costs, schedules, and quality levels of
software production.

Unfortunately, historical measures based on
"Lines of Source Code" have tended to
conceal vital information, and have slowed
software research efforts. Improved metrics
based on the functional content of software
are now available. These new metrics reveal
that coding itself is not the major cost driver
of large-scale software production. Both
paperwork and defect removal costs

~ outweigh pure coding by substantial margins
for military software.

Introduction

Measurement, metrics, and statistical analysis
of data are the basic tools nf science and
engineering. Unfortunately, the software
industry has existed for almost 50 years with
a dismaying paucity of measured data, with

metrics that have never been formally
validated, and with statistical techniques that
are at best questionable.

As the 20th century draws to a close, it is
desirable for the phrase "software
engineering” to cease being an oxymoron,
and become a valid description of a true
engineering discipline. An important step in
that direction will be to evaluate and validate
all of the common metrics and measurement
techniques for software under controlled
conditions, in order to select a standard set
that can be used with little or no ambiguity
and with minimal subjectivity.

Consider some of the basic metrics that
confront us in a normal day. Upon arising,
we may check the outside temperature and
perhaps note the barometric pressure to

judge if it will rain. At breakfast, we may

think about the cholesterol levels and the
calories in the food we eat. If we purchase
gasoline on the way to work, we perhaps
consider the octane rating of the fuel we are
purchasing. We mighi also reflect on the
norsepower of the automobile engine.

All of the above meirics are interesting in
several respects: 1) They are synthetic
metrics which deal with invisible phenomena

207 11th Annual National Conference on Ada Technology 1993

that cannot be counted directly; 2) Most
adult humans understand the significance and
basic meaning of the metric; 3) Very few
individuals (less than 1%) humans know how
to calculate thesc metrics or understand their
matheématical derivations.

Now consider the metrics history of software
engineering. Prior to the 1970's, the phrase
"software enginecring" did not exist. Those
of us in the ﬁeld were simply called
"programmers."

The only metrics that we used were simple
natural metrics such as integers. We tended
to use lines of code because we wrote our
programs on special programming tablets
where the lines were clearly visible and often
numbered. 3Some programming languages
such as Basic could not even be used without
line numbers.

In the 1960's and 1970, fairly low-level
languages such as Assembly, JOVIAL, and
FORTRAN were bemg used for the bulk of
military programmmg The effort devoted
to programming and code-related work was
the dominant activity of software. Other
activities such as requirements, design, and
user documentation were seldom measured
at all.

When non-coding activities were measured,
we used simple natural metrics such as
integer counts of the pages or words.
Graphics seldom occurred in commercial
software, and topics such as reusable code,
object-oriented languages, pull-down menus,
graphical interfaces, mice, etc. were still in
the future.

In the 1980's and early 1990's, an explosion
of new languages, n.w methods, and new

11th Annual National Conference on Ada Technology 1993

approaches changed the work of software
development in profound ways.

By the start of the 1990 decade more
powerful languages such as Ada, Obiective
C, C++, and Modula 2 were being used.
New CASE tools and I-CASE tools were
available, which offered significant new
capabilities to software engineers. New
standards such as DoD 2167A v.ere in effect

- for military software, and the ISO 9000

standard series was starting to be deployed
for civilian software.

These new approaches made profound
changes in the cost and effort structure
required for software production "and
maintenance. The tasks associated with pure
coding were being reduced almost daily.
However, the tasks associated with planning
and specification preparation were mcreasmg
daily as well.

Unfortunately, attempts to model these
profound changes in the software paradigm
using traditiona! "Lines of Source Code"
metrics discovered deep mathematical
problems with the metric itself. LOC metrics
were proved to have a built-in bias which
penalized more powerful languages such as
Ada. LOC metrics also failed to deal with
the enormous costs and resources devoted to
plans, specifications, and other forms of
software paperwork. :

The first powerful synthetic metric
developed for software was the Function
Point, which was created in the middle
1970's by Allan Albrecht and his colleagues
at IBM. This metric was placed in the public
domain in October of 1979 at a jomt
SHARE/GUIDE/IBM conference in
Monterey, California (1).

208

If fature historians want to explore the
evolution of software engincering as a true
engineering discipline, October 14th 1979 is
a strong contender to be considered the

exact starting point. Allan Albrecht's
presentation in Montercy marks the first day
in software history than an effective synthetic
metric for software was publicly stated.

Problems with "Lines of Source Code"
Metrics

The subjéctivity of "Lines of Source Code”
can be illustrated by the following analogy:
Ask a software engineer or software

manager a basic question: "Is the speed of

light the same in the United States, and
Germany?" Obviously the speed of light is
the same in every country.

Then ask the following question: "Is a Line
of Source code the same in the United States
and Germany?" The answer to this question
is, "No, it is not" :

Software articles and rescarch in Germany
has tended to use physical lines more often
than logical statements, while the reverse is
true for the U.S. and Japan.

There have been other metrics that differed
from country to country, such as U.S.
gallons and Imperial gallons. Also statute
miles and nautical miles differ significantly.
These differences are common knowledge,
while the differences in "Lines of Source
Code" definitions are comparatively obscure,
and sometimes not fully stated by software
authors.

The most widely used software metric since
the industry began has been Lines of Source
Code. or LOC. Either this metric or

N . -~

"KLOC" (where K stands for 1000) have
been used in print in more than 10,000
articles and books since 1946 Most users of
LOC and KLOC regard this metric as being

- objective, and indeed-a number of standard

reference books and articles on metrics have
cited the objectivity of LOC as a key virtue.

- However, from discussions with more than a

thousand software . managers and
professionals, it is unfortunate to report that
the LOC metric may be the most subjective
metric used in refereed articles in the last 50
years. :

When LOC and KLOC originated as
software metrics, the only languages in use
were machine language and basic assembly
language. For basic assembly language,
physical lines and logical lines were equal:
each source statement occupied one line on a
coding sheet or one tab card. From 1946
until about 1960, LOC and KLOC metrics
were reasonably well defined and rezsonably
objective. The explosion of languages from
1960 forward destroyed the objectivity of
LOC and KLOC, and their validity for
economic studies as weli.

From surveys of counting practices carried
out by the author and his colleagues at
Software Productivity Research, the varieties
of subjective methods associated with LOC
counting creates a total range of apparent
size of more than one order of magnitude for
the software industry as a whole. The
largest number of major code counting
variations observed within a single company
was six, and the range for counting the size
of a single control project within that
company was approximately S to 1. This is
far too broad a range to be tolerated for an
engineering metric.

209 1i1th Annual National Conference on Ada Technology 1993

A

Nl
IR =N om

The standard dictionary definition of
subjectivity is "Particular to a given
individual; personal." Under that definition, it
must be concluded that LOC and KLOC are
in fact subjective metrics and not objective
ones.

Code counting subjectivity could be
eliminated by establishing standard counting
conventions for each major language.
Indeed, Software Productivity Research (2),
the IEEE (3), and the Software Engineering
Institute (4) published preliminary draft LOC
counting proposals within a year of one
another. '

Unfortunately, the SPR, IEEE, and SEI draft
standards differ, so even in the domain of
standardization of LOC counting practices

~ subjectivity is present. Note that for many

modern languages such as 4GL's,
spreadsheets, query languages, object-
oriented languages, and graphics icon-base
languages, none of the current draft
standards are technically acceptable.

The LOC Paradox

The LOC and KLOC metrics have a much
deeper and more serious problem than a
simple lack of standardization; LOC metrics
are troubled by a deep mathematical
paradox. Both productivity aud quality
appear to move backwards when measured
with LOC!

Indeed, the tendency of LOC and KLOC to
move backwards as economic productivity
improves is a much more serious problem for
software economic studies than the
subjectivity of LOC and KLOC. This
mathematical problems with LOC are severe
enough so that they make the phrase
"software enginecring" seem ridiculous. It is

1ith Annual National Conference on Ada Technology 1993

L

embarrassing for a major industry such as
software to continue to use a metric that
does not work, and to do so without even
realizing what is wrong with it!

Unfortunately, many well-known books on
software measurement and econonucs do not
contain even a single statement about this
well-known problem. To cite but two

- examples, both Barry Boehm's Software

Engineering Economics (5) and Robert
Grady's and Deborah Caswell's Software
Metrics; Establishing a__Company-Wide
Program {6) use LOC and KLOC metrics
without any warnings or cautions to the
readers of the paradoxical nature of these
metrics for high-level languages.

Unfortunately, the software measurement
initiatives at SEI (7) also fail to discuss the
problems and paradox of LOC metrics, and
do not discuss functional metrics at all.
These unfortunate omissions place the SEI
measurement work some distance behind the
state of the art, although other aspects cf the
SEI . measurement studies are fairly
advanced.

The paradox with LOC and KLOC is caused
by the impact of the fixed and inelasiic costs
of certain activities that are always part of
sofiware projects. - The -problem of
measuring productivity in the presence of

fixed costs has long been understood for

manufacturing economics.

However for software, it was initially
described by the suthor in 1978 (8), and fully
explained in 1986 in the book Programming

Productivity (9).

There is a basic law of manufactuting
economics that if a manufacturing process
includes a high percentage of fixed costs, and

e

s

210

211

the number of units produced goes down,
the cost per unit will go up. This same law
also applies to software. When LOC is used
as a manufacturing unit, and there is a move
from low-level to high-level languages, then
obviously the number of "units" to be created -
will decline in the presence of fixed costs.

- Using LOC and KLOC metrics for a single
~ language can produce valid results if

standard counting rules are applied.
However, for cross-language comparisons,
or for projects containing multiple languages
(such as Ada and Assembly) the results are
always irvalid and paradoxical.

The LOC metric, compared to Function
Points, also distorts quality measurements.
The situation with LOC is so paradoxical and
absurd in the presence of high-level
languages that it is fair to state that the LOC
metric has slowed the advance of software

engineering as a true engineering discipline.

It is time to step up to this problem, and
declare LOC metrics to be an example of
professional malpractice.

Malpractice is a serious situation, and implies
the usage of an approach known to be
harmful under certain conditions, which
should have been avoided through normal
professional diligence. For example, a
medical doctor who prescribed penicillin for
a patient known to be allergic to that
antibiotic is an illustration of professional
malpractice. Using LOC and KLOC metrics
to evaluate languages of different ievels
without cautioning about the paradoxical
results that occur is unfortunately also an
example of professional malpractice.

The LOC and KLOC metrics grow
progressively more ambiguous and ccunter-
intuitive as the level of languages goes up or

11th Annual National Conference on Ada Technology 1993

for multi-language studies. Following are
situations where LOC and KLOC are
ambiguous enough to be harmful to
economic understanding . and their usage -
should constitute malpractice:

A) LOC and KLOC metrics should be
avoided for economic studies involving
object-oriented languages, ~ 4GL's,
generators, spreadsheets, and graphic-icon
based languages.

B) LOC and KLOC metrics should never be
used to compare unlike languages, such as
C++ and Ada. '

C) LOC and KLOC metﬁlics should not be
used for applications containing multiple
languages, such as C and! Assembly or Ada
ar.d Assembly. ‘

D) LOC and KLOC metths should not be

used to measure soﬂware plans,”
specifications, or other non-code
deliverables.

E) LOC and KLOC metrics should not be
used for quality normalization (i.e. defects
per KLOC) for studies involving multiple
languages. ‘

Consider the similar problem of carrying out
international cost surveys that involve
multiple currencies such as dollars, yen,
pounds, lire, deutschmarks, francs, etc.

There are two methods for carrying out
accurate international cost surveys: A) One
of the currencies such as dollars is selected
as the base currency, and all other currencies
are converted into equivalent amounts; 2) A
synthetic base metric such as European
Currency Units (ECU) is selected, and all
quantities are expressed in those units.

r

AN

\,
\

N

The acceptable methods for dealing with
multiple currencies provide a useful model
for software studies dealing with multiple
languages:

A) One of the languages such as Assembly
Language is selected as the base language,
and all other languages are converted into
equivalent amounts.

B) A synthetic base metric such as Feature
Points is selected, and all quantities are
expressed in those units. Of these two
methods for dealing with multiple languages,
method B is preferred today.

Comparing Ada and Assembler with LOC

Since the Ada language is such a key
component of military software strategy, it
is important to understand the way LOC
metrics interact with Ada.

Following are two abstract examples of the
same project, with one version created in
Assembly Language and the other in the
Ada language, to clarify the paradox of
LOC metrics.

Assembly Language Version
(10,000 LOC and 50 Functien Points)

Activity Effort Costs

Requirements 2.0 $20,000
Design 4.0 $40,000
Coding 6.0 $60,000
Testing 4.0 $40,000
Documents 2.0 $20,000
Management 2.0 $20,000
Totals 20.0 $200,000

Now consider the same project, only let us
assume that the programming language
used was Ada:

Ada Language Version
(2,000 LOC and 50 Function Points)

Activity Effort Costs

Requirements 2.0 '$20,000
Design 2.0 $20,000
Coding ' 1.5 $15,000
Testing 1.5 $15,000
Documents 2.0 $20,000
Management 1.0 $10,000
Totals 10.0 $100,000

Using standard economic definitions, the
Ada version is twice as productive as the
Assembly language version, since the same
goods were delivered with only half the
effort and expense.

However, when productivity is measured
using manufacturing economics, with LOC
defined as the unit of manufacture, the real
economic advantages of Ada cannot be
seen:

LOC per Cost per

Staff Month Source Line
Assembly £00 $20.00
Ada 200 $50.00

When the manufacturing unit is switched
from LOC to Function Points, the
economic advantages of Ada become clear,

11th Annual National Conference on Ada Technology 1993

212

Since both versions perform the same
functions, assume that the Function Point
totals of the Assembly and Ada versions are
identical: 50 Function Points each.

FP Per Cost per

Staff Month ~ FP
Assembly 2.5 $4000
Al 50 $2000

Observe that when Function Points are used
as the unit of manufacture, rather than
Lines of Code, standard economics and
manufacturing economics now agree. Ada
is significantly more productive than
Assembly language.

Function Points are synthetic metrics, and
one of the advantages of synthetic metrics
is that they have wide general utility. For
example, the synthetic metric horsepower
can be used on electric, diesel, and gasoline
engines with equal precision.

Natural metrics, such as LOC, cause
serious trouble when they are used outside
their normal domain. In the case of LOC,
it the inclusion of non-coding activities
which degrade their accuracy.

from the MK-160 Gun System

The basic thesis of this paper is that coding
is no longer the dominant cost driver for
military software projects, and other
elements such as paperwork, testing, and
non-coding tasks now constitute the bulk of
military software costs.

If coding is only a minor portion of total
software costs, then it is inappropriate to

use LOC metrics for the entire project.
Synthetic metrics such as Function Points
are much more appropriate for
normalization of mixed-activity economic
and quality studies.

It is useful to conclude by examining actual
data. A report on the MK-160 gun
computing. system produced by Paul W.
Lusher of the Naval & Surface Weapons
Center at Dahlgren (10) provides
confirmation of the hypothesis that coding
is no longer the dominant cost driver for
military software applications.

The MK-160 is a mixed-language system
written primarily in CMS2 and containing

" about 120,632 LOC and 1240 Function

Points.
The sum of the plans, specifications, and
user documents for the project totaled to
5,585 pages.

The total effort for the project was 795.6
person months.

Coding itself constituted 221.5 person
months, or only 27.8% of the total.

Activities concemed with paperwork

(plans, specifications, user documents)

amounted to 256.8 person months, or about
32.3% of the total.

Activities concerned with defect removal
operations (reviews, inspections, testing)
amounted to 200.1 person months of effort,
or about 25% of the iotal.

The effort for the various non-coding
activities associated with this project far
outweighed the code-related activities:

213 11th Annual National Conference on Ada Technology 1993

about 72.1% of the total effort went on
non-coding activities.

Following are some of the details of this
project, to illustrate the mixture of coding,
paperwork, defect removal, and other
activities which comprise modern military
weapons software: '

Software Effort for the MK-160 Gun

. System
Activity Person Months of
Effort

Development plan 5.7
Test plan 6.9
Personnel management 91.4
Progress reports 254
Configuration control 25.7
Requirements 58.4
System architecture 11.3
Initial specification . 65.3
Final specification 23.6
Data design spec 23.1
Data structure review 4.5
Coding 221.5
Unit test 14.6
Function test 21.3
Regression test 79
Irtegration 14.7
Integration test 18.5
Stress test 10.4
System test 31.6
Field test 23.1
Independent test 23.7
Operator's guide 12.2
Maintenance manual 21.9
Reference card 0.2

Total 795.6

11th Annual National Conference on Ada Technology 1993

The overall productivity rate for this
project expressed in LOC is abeut 152
LOC per person month (note that pure
coding had a rate of about 545 LOC per
person month).

Expressed in Function Points per person
month, the overall rate was 1.56, and the
coding itself had a rate of aboui 5.6
Function Points per person month.

For mixed language projecis, and for
comparison between projects, Function
Poinis are markedly superior to the older
LOC metrics for all normalization,
economic, and quality research purposes.

Summary and Conclusions

Software development in 1993 is changing
dramatically under the combined impact of
new languages, new standards, new tools,
and new methods.

. In order to explose the impact of these new

approaches, it is urgent for the software
industry -- both military and civilian -- to
be able to measure the impact of improved
practices.

Lines of Code metrics are no longer viable,
and indeed a case can be made for
relegating LOC metrics to the category of
"professional malpractice.”

Modern functional metrics are becoming
the dominant tool for exploring software
productivity and quality as the industry
matures.

Indeed, the non-profit International
Function Point Users Group (IFPUG) has
been growing at a rate of 46% per year and

214

b, b e e

is now the largest measurement association
in the United States.

1t is critical that the software measurement
work of the U.S. military services, the
DoD, and the Software Engineering
Institute (SEI) be at state of the art levels.

This means that the basic concepts of
functional metrics should now be included
in the training of software engineers and
software managers. :

References

1) Albrecht, A.J.; "Measuring
Application Development
Productivity"; Froceedings of the Joint
IBM/SHARE/GUIDE Application
.Development Symposium; October
1979; pp 83-92.

2) Jones, Capers; "Rules for Counting
Procedural Source Code;" Applied
Software Measurement; McGraw-Hil!;
New York, NY; 1991; pp 309-316.

~3) Draft Standard for Software
Productivity Metrics; P1045/D2.1;
IEEE Software Productivity Metrics
~ Working Group; December 1990.

4) Software Size Measurement with
Application to Source Statement
Counting; Software Engineering
Institute (SEI), Pittsburgh, PA; August
1991.

5) Boehm, Barry W.; Software

Engineering Economics; Prentice Hall,
Englewood Cliffs, NJ; 1981; 767

pages.

6) Grady, Robert B. and Caswell,

" Dcborah L; Software Metrics --
Establishing a Company-Wide
Program; Prentice Hall, Englewood
Cliffs, NI; 1987; 288 pages.

7) Rozum, James A.; Software
Measurement Concepts for Acquisition
Program Managers; Technical Report
CMU/SEI-92-TR-11; ESD-TR-92-11;

~ Software Engineering Institute;
Carnegie Melilon University;
Pittsburgh, PA; June 1992; 68 pages.

8) Jones, Capers; "Measuring
Programming Productivity and
Quality;" IBM Systems Journal; Vol.
17, No. 1; 1978; pp. 36-63; IBM
Corporation, Armonk, NY.

9) Jrncs, Capers; Programming
Productivity; McGraw-Hill, New
York, NY; 1986; 282 pages.

10) Lusher, Paul W.; Productivity

Baseline Report for MK-160 Gun

Computing System Software
Development; Gun Fire Conirol
Systems Branch (G72); NAVSWC,
Dahlgren, VA; October 1991; 51

pages.

215 11th Annual National Conference on Ada Technology 1993

. : .) B W
. ' e V- e Lo s

'K

o

| Futures Panel

Moderator: Miguel Carrio, MTM Englneering, Inc.
Paneclists: Dr. Samuel Metters, CEO, Metters Industries

James Smith, President & CEO, SEMA Corporation
Heinz Kagerer, Vice President, SIEMENS-NIXDORF

11th Annual National Conference on Ada Technology 1993

216

J

-

Author’s Index

Armitage, James i i it i i i e e i, . 4B
Barrett, Martin e e e e 92
Bekele, Dawit e e e 184
Bernon, C. i e e e e 184
Behimann, Rodney i SRR P 150
Bott, Frank e i e e e e 97
Boyken, Jeffrey D. e e 121
Braun, Christinec. i ittt it it ennns .. 46
Cogan, Kevind. e e 144
(0T A - o 30
. Coutant, Raymond e i 46
- Eldridge, Charles A. e 17
Filall, M. o e e e e 184
Gray, Jeff e e e e e e e S 38

"~ Gray,JohnH. e e e e 169
Gref,LynnG., PP 112
Hooper,Jamescvvvennn.. e 86, 169
JONES, CaPBIS ..ttt e e e e 206
Kirch, Murray 0 ittt iininaninneeaasc.. 139
Kovacs, RogerV.Z., e S~]
LeJeune, UbanA. e 139
Lee, YUR-eng oottt i i i i i i i e e 8
Lodgher, Akhtar e e e e e e 86
Lutz, Michael J. et e et et e e e [P 200
Mitchell, Brian K. et e e e e PO -4 |
O'Connor, Michael J. S, et e 121
Oberndorf, Triciao i il i i e . 160

~__Plishka, Richard M. e e e e 127

Price, Margaretha W. S [P e 70
Rateliff, Mark i i i i i e e e 97
Reese, Kimberly e e e e 30
Richman, M. Susan0ttt e innannn. 92
Rigaud, JM. i e e 184
Sayah, A.............. e e e e e e 184
Schimiedekamp, Carl i it i i i i e 160
Spuck, Hl, William H. i i e e 112
Squitieri, LCDR Vincent ettt er e 160
Stewart, William R. i i it i i i e 55
Stotter-Brooks, Timcuvun.. e 97
Terry, RobertHaddon ittt it 70

. Vitaletti, William G. i iiiiiie.... BB
Waite, JOhN V. ... i e i e e [8
Whittle, Benjamin R. it it i i i it 97

217 11th Annual National Conference on Ada Technology 1993

